

Drive Based Center Winder – SD6 Handbuch

de 02/2025 ID 443345.03

Inhaltsverzeichnis

	Inhalt	haltsverzeichnis			
1	Vorw	ort		5	
2	Benut	tzerinform	ationen	6	
	2.1	Aufbewa	hrung und Weitergabe	6	
	2.2	Beschrieb	penes Produkt	6	
	2.3	Richtlinie	n und Normen	6	
	2.4		t		
	2.5		prache		
	2.6		beschränkung		
	2.7	Darstellu	ngskonventionen		
		2.7.1	Darstellung von Warnhinweisen und Informationen		
		2.7.2	Auszeichnung von Textelementen		
		2.7.3	Mathematik und Formeln	8	
	2.8	Marken .		9	
3	Siche	rheitshinw	eise	. 10	
4	Was S	Sie vor der	Inbetriebnahme wissen sollten	. 11	
	4.1	Programi	noberfläche DS6	. 11	
		4.1.1	Ansicht konfigurieren	. 13	
		4.1.2	Navigation über sensitive Schaltbilder	. 14	
	4.2	Bedeutur	ng der Parameter	. 15	
		4.2.1	Parametergruppen	. 15	
		4.2.2	Parameterarten und Datentypen	. 16	
		4.2.3	Parametertypen	. 17	
		4.2.4	Parameteraufbau	. 17	
		4.2.5	Parametersichtbarkeit	. 18	
	4.3	Signalque	ellen	. 19	
	4.4	Nichtflüc	htiges Speichern	. 19	
5	Inbet	riebnahme	2	. 20	
	5.1	Projekt a	ufsetzen	. 21	
		5.1.1	Antriebsregler und Achse projektieren	. 21	
		5.1.2	Sicherheitstechnik einrichten	. 22	
		5.1.3	Weitere Antriebsregler und Module anlegen	. 22	
		5.1.4	Modul projektieren	. 23	
		5.1.5	Projekt projektieren	. 23	
	5.2	Mechanis	sches Achsmodell abbilden	. 24	
		5.2.1	Motor parametrieren	. 24	
		5.2.2	Achsmodell parametrieren	. 24	

5.3 Absolute Position referenzieren		Absolute	e Position referenzieren	28
		5.3.1	Referenziermethode definieren	28
		5.3.2	Referenzschalter parametrieren	28
		5.3.3	Referenz setzen	28
	5.4	Gerätest	teuerung Drive Based parametrieren	29
		5.4.1	Übergangsbedingungen parametrieren	29
	5.5	Konfigur	ration übertragen und speichern	30
		5.5.1	Konfiguration übertragen	30
		5.5.2	Konfiguration speichern	32
	5.6	Konfigur	ration testen	33
		5.6.1	Tippbetrieb testen	33
		5.6.2	Bewegungskommandos testen	35
	5.7	Applikati	tion Drive Based Center Winder parametrieren	36
		5.7.1	Allgemeine Bewegungsgrößen und Signalquellen	36
		5.7.2	Betriebsart Zentralwickler parametrieren	45
		5.7.3	Betriebsart Kommando parametrieren	65
6	Mehr	zu Drive I	Based Center Winder?	89
	Mehr zu Drive Based Center Winder? 6.1 Drive Based Center Winder – Konzept 6.1.1 Betriebsarten	89		
	0.2			
		6.1.2	Tippbetrieb	90
		6.1.3	Steuertafeln	91
		6.1.4	Motion-Kern	91
		6.1.5	Quellen	91
		6.1.6	Zusatzfunktionen	94
	6.2	Zentralw	vickler – Konzept	103
		6.2.1	Wickelmethoden	104
		6.2.2	Bewegungsgrößen	109
		6.2.3	Wickeldurchmesser	111
		6.2.4	Wickelrichtung	113
		6.2.5	Kompensation von Reibung und Massenträgheit	115
		6.2.6	Materialriss-Überwachung	116
		6.2.7	PID-Regler	116
	6.3			118
	6.4	Endschal	lter	120
		6.4.1	Reale Achsen	120
		6.4.2	Sonderfälle	124
	6.5	Referenz	zierung	125
		6.5.1	Referenziermethoden	125
		6.5.2	Referenzposition	
		6.5.3	Referenzerhaltung	147
		6.5.4	Referenzverlust	148

	6.6			
		6.6.1	Gerätezustandsmaschine Drive Based	152
		6.6.2	Zustände, Übergänge und Bedingungen	153
	6.7	Bewegur	ngskommandos	159
	6.8	Elektroni	sches Typenschild	161
	6.9	Schleppa	bstand-Überwachung	161
7	Anha	ng		162
	7.1	Standard	l-Mapping Drive Based Center Winder	162
		7.1.1	SD6: Empfangs-Prozessdaten Drive Based Center Winder	163
		7.1.2	SD6: Sende-Prozessdaten Drive Based Center Winder	163
	7.2	Weiterfü	hrende Informationen	164
	7.3	Formelze	eichen	165
	7.4	Abkürzuı	ngen	165
8	Konta	akt		166
	8.1	Beratung	z, Service, Anschrift	166
	8.2	Ihre Mei	nung ist uns wichtig	166
	8.3	Weltweit	te Kundennähe	167
	Abbil	Abbildungsverzeichnis		
	Tabel	lenverzeio	hnis	170
	Gloss	Glossar		

STÖBER 1 | Vorwort

1 Vorwort

Diese Dokumentation beschreibt die generelle Funktionalität der Applikation Drive Based Center Winder und führt Sie Schritt für Schritt durch Einrichtung und Projektierung Ihres Antriebsprojekts in den einzelnen Betriebsarten.

Die in der Software enthaltene Applikation Drive Based Center Winder stellt universelle Lösungen für eine antriebsbasierende Bewegungssteuerung mit den Regelungsarten Position, Geschwindigkeit und Drehmoment/Kraft bereit. Die mit diesen Regelungsarten verbundenen Bewegungskommandos sind in folgende Betriebsarten kategorisiert:

- Kommando
- Zentralwickler

Die Applikation Drive Based Center Winder ermöglicht Ihnen in der Betriebsart Zentralwickler bzw. mithilfe des Bewegungskommandos 30: MC_Winder in der Betriebsart Kommando das Realisieren verschiedener Wickelanwendungen für den Zentralwickler in der Regelungsart Geschwindigkeit, z. B. das Aufwickeln, Abwickeln oder Umwickeln von Materialien wie Kunststoff, Draht, Textilien oder Papier.

Zusatzfunktionalitäten zur Überwachung von Prozessgrößen wie Positionen oder Geschwindigkeiten bieten zusätzlichen Komfort in Sachen Monitoring.

Die Inbetriebnahme-Software DriveControlSuite für Antriebsregler der 6. Generation bietet komfortable Funktionen zur effizienten Projektierung und Inbetriebnahme von Antriebsreglern in Multi- und Einzelachsanwendungen.

2 Benutzerinformationen

Diese Dokumentation unterstützt Sie bei der Einrichtung sowie der Projektierung Ihres Antriebssystems mit der Applikation Drive Based Center Winder in Kombination mit der Gerätesteuerung Drive Based.

Fachliche Vorkenntnisse

Um einen oder mehrere Antriebsregler – gegebenenfalls in Kombination mit einer Steuerung – mit der Applikation Drive Based Center Winder in Betrieb nehmen zu können, sollten Sie über Grundkenntnisse im Umgang mit STÖBER Antriebsreglern der 6. Generation und der Inbetriebnahme-Software DriveControlSuite verfügen.

Technische Voraussetzungen

Bevor Sie Ihr Antriebssystem in Betrieb nehmen, müssen Sie die teilnehmenden Antriebsregler verdrahtet und deren korrekte Funktionsweise initial überprüft haben. Folgen Sie hierzu den Anweisungen im Handbuch des jeweiligen Antriebsreglers.

Gender-Hinweis

Aus Gründen der besseren Lesbarkeit wird auf eine geschlechtsneutrale Differenzierung verzichtet. Entsprechende Begriffe gelten im Sinne der Gleichbehandlung grundsätzlich für alle Geschlechter. Die verkürzte Sprachform beinhaltet also keine Wertung, sondern hat lediglich redaktionelle Gründe.

2.1 Aufbewahrung und Weitergabe

Da diese Dokumentation wichtige Informationen zum sicheren und effizienten Umgang mit dem Produkt enthält, bewahren Sie diese bis zur Produktentsorgung unbedingt in unmittelbarer Nähe des Produkts und für das qualifizierte Personal jederzeit zugänglich auf.

Bei Übergabe oder Verkauf des Produkts an Dritte geben Sie diese Dokumentation ebenfalls weiter.

2.2 Beschriebenes Produkt

Diese Dokumentation ist verbindlich für:

Antriebsregler der Baureihe SD6 in Verbindung mit der Software DriveControlSuite (DS6) ab V 6.7-A und zugehöriger Firmware ab V 6.7-A.

2.3 Richtlinien und Normen

Die für den Antriebsregler und das Zubehör relevanten europäischen Richtlinien und Normen entnehmen Sie der Dokumentation des Antriebsreglers.

2.4 Aktualität

Prüfen Sie, ob Ihnen mit diesem Dokument die aktuelle Version der Dokumentation vorliegt. Auf unserer Webseite stellen wir Ihnen die neuesten Dokumentversionen zu unseren Produkten zum Download zur Verfügung: http://www.stoeber.de/de/downloads/.

2.5 Originalsprache

Die Originalsprache dieser Dokumentation ist Deutsch; alle anderssprachigen Fassungen sind von der Originalsprache abgeleitet.

2.6 Haftungsbeschränkung

Diese Dokumentation wurde unter Berücksichtigung der geltenden Normen und Vorschriften sowie des Stands der Technik erstellt.

Für Schäden, die aufgrund einer Nichtbeachtung der Dokumentation oder aufgrund der nicht bestimmungsgemäßen Verwendung des Produkts entstehen, bestehen keine Gewährleistungs- und Haftungsansprüche. Dies gilt insbesondere für Schäden, die durch individuelle technische Veränderungen des Produkts oder dessen Projektierung und Bedienung durch nicht qualifiziertes Personal hervorgerufen wurden.

2.7 Darstellungskonventionen

Damit Sie besondere Informationen in dieser Dokumentation schnell zuordnen können, sind diese durch Orientierungshilfen in Form von Signalwörtern, Symbolen und speziellen Textauszeichnungen hervorgehoben.

2.7.1 Darstellung von Warnhinweisen und Informationen

Warnhinweise sind durch Symbole gekennzeichnet. Sie weisen Sie auf besondere Gefahren im Umgang mit dem Produkt hin und werden durch entsprechende Signalworte begleitet, die das Ausmaß der Gefährdung zum Ausdruck bringen. Darüber hinaus sind nützliche Tipps und Empfehlungen für einen effizienten und einwandfreien Betrieb besonders hervorgehoben.

ACHTUNG!

Achtung

bedeutet, dass ein Sachschaden eintreten kann,

• wenn die genannten Vorsichtsmaßnahmen nicht getroffen werden.

♠ VORSICHT!

Vorsicht

mit Warndreieck bedeutet, dass eine leichte Körperverletzung eintreten kann,

• wenn die genannten Vorsichtsmaßnahmen nicht getroffen werden.

♠ WARNUNG!

Warnung

mit Warndreieck bedeutet, dass erhebliche Lebensgefahr eintreten kann,

• wenn die genannten Vorsichtsmaßnahmen nicht getroffen werden.

▲ GEFAHR!

Gefahr

mit Warndreieck bedeutet, dass erhebliche Lebensgefahr eintreten wird,

• wenn die genannten Vorsichtsmaßnahmen nicht getroffen werden.

Information

Information bedeutet eine wichtige Information über das Produkt oder die Hervorhebung eines Dokumentationsteils, auf den besonders aufmerksam gemacht werden soll.

2 | Benutzerinformationen STÖBER

2.7.2 Auszeichnung von Textelementen

Bestimmte Elemente des Fließtexts werden wie folgt ausgezeichnet.

Wichtige Information	Wörter oder Ausdrücke mit besonderer Bedeutung	
Interpolated position mode	Optional: Datei-, Produkt- oder sonstige Namen	
Weiterführende Informationen	Interner Querverweis	
http://www.musterlink.de	Externer Querverweis	

Software- und Display-Anzeigen

Um den unterschiedlichen Informationsgehalt von Elementen, die von der Software-Oberfläche oder dem Display eines Antriebsreglers zitiert werden sowie eventuelle Benutzereingaben entsprechend kenntlich zu machen, werden folgende Darstellungen verwendet.

Hauptmenü Einstellungen	Von der Oberfläche zitierte Fenster-, Dialog- , Seitennamen oder Schaltflächen, zusammengesetzte Eigennamen, Funktionen
Wählen Sie Referenziermethode A	Vorgegebene Eingabe
Hinterlegen Sie Ihre <eigene ip-adresse=""></eigene>	Benutzerdefinierte Eingabe
EREIGNIS 52: KOMMUNIKATION	Display-Anzeigen (Status, Meldungen, Warnungen, Störungen)

Tastenkürzel und Befehlsfolgen oder Pfade sind folgendermaßen dargestellt.

[Strg], [Strg] + [S]	Taste, Tastenkombination
Tabelle > Tabelle einfügen	Navigation zu Menüs/Untermenüs (Pfadangabe)

2.7.3 Mathematik und Formeln

Zur Darstellung von mathematischen Zusammenhängen und Formeln werden die folgenden Zeichen verwendet.

- Subtraktion
- + Addition
- × Multiplikation
- ÷ Division
- || Betrag

02/2025 | ID 443345.03

2.8 Marken

Die folgenden Namen, die in Verbindung mit dem Gerät, seiner optionalen Ausstattung und seinem Zubehör verwendet werden, sind Marken oder eingetragene Marken anderer Unternehmen:

CANopen°, CANopen° und CiA° sind eingetragene Marken der internationalen Anwender- und

CiA° Herstellervereinigung CAN in AUTOMATION e.V., Deutschland.

EnDat^{*} EnDat^{*} und das EnDat^{*}-Logo sind eingetragene Marken der Dr. Johannes Heidenhain

GmbH, Deutschland.

EtherCAT[®], EtherCAT[®] und Safety over EtherCAT[®] sind eingetragene Marken und patentierte Safety over EtherCAT[®] Technologien, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

PLCopen* ist eine eingetragene Marke der PLCopen-Organisation, Niederlande.

PROFIBUS°, PROFIBUS° und PROFINET° sind eingetragene Marken der PROFIBUS

PROFINET® Nutzerorganisation e.V., Deutschland.

Alle anderen, hier nicht aufgeführten Marken, sind Eigentum ihrer jeweiligen Inhaber.

Erzeugnisse, die als Marken eingetragen sind, sind in dieser Dokumentation nicht besonders kenntlich gemacht. Vorliegende Schutzrechte (Patente, Warenzeichen, Gebrauchsmusterschutz) sind zu beachten.

⚠ WARNUNG!

Lebensgefahr bei Nichtbeachtung von Sicherheitshinweisen und Restrisiken!

Bei Nichtbeachtung der Sicherheitshinweise und Restrisiken in der Dokumentation des Antriebsreglers können Unfälle mit schweren Verletzungen oder Tod auftreten.

- Halten Sie die Sicherheitshinweise in der Antriebsregler-Dokumentation ein.
- Berücksichtigen Sie bei der Risikobeurteilung für die Maschine oder Anlage die Restrisiken.

⚠ WARNUNG!

Fehlfunktion der Maschine infolge fehlerhafter oder veränderter Parametrierung!

Bei fehlerhafter oder veränderter Parametrierung können Fehlfunktionen an Maschinen oder Anlagen auftreten, die zu schweren Verletzungen oder Tod führen können.

- Beachten Sie die Security-Hinweise in der Antriebsregler-Dokumentation.
- Schützen Sie z. B. die Parametrierung vor unbefugtem Zugriff.
- Treffen Sie geeignete Maßnahmen für mögliche Fehlfunktionen (z. B. Not-Aus oder Not-Halt).

02/2025 | ID 443345.03

4 Was Sie vor der Inbetriebnahme wissen sollten

Nachfolgende Kapitel ermöglichen Ihnen einen schnellen Einstieg in den Aufbau der Programmoberfläche sowie die zugehörigen Fensterbezeichnungen und liefern Ihnen relevante Informationen rund um Parameter sowie zum generellen Speichern Ihrer Projektierung.

4.1 Programmoberfläche DS6

Über die grafische Oberfläche der Inbetriebnahme-Software DriveControlSuite (DS6) können Sie Ihr Antriebsprojekt schnell und effizient projektieren, parametrieren und in Betrieb nehmen. Im Service-Fall können Sie mithilfe der DriveControlSuite Diagnoseinformationen wie Betriebszustände, Störungsspeicher und Störungszähler Ihres Antriebsprojekts auswerten.

Information

Die Programmoberfläche der DriveControlSuite steht Ihnen in deutscher, englischer und französischer Sprache zur Verfügung. Um die Sprache der Programmoberfläche zu ändern, wählen Sie Menü Einstellungen > Sprache.

Information

Die Hilfe der DriveControlSuite erreichen Sie in der Menüleiste über Menü Hilfe > Hilfe zur DS6 oder über die Taste [F1] auf Ihrer Tastatur. Abhängig vom Programmbereich, in dem Sie [F1] drücken, öffnet sich ein thematisch passendes Hilfethema.

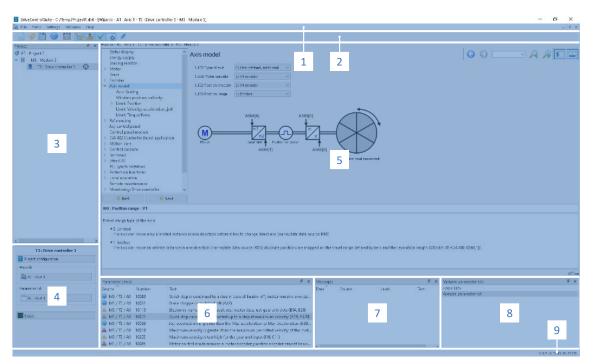


Abb. 1: DS6: Programmoberfläche

Nr.	Bereich	Beschreibung	
1	Menüleiste	Über die Menüs Datei, Ansicht, Einstellungen und Fenster können Sie Projekte öffnen und speichern, Programmfenster ein- und ausblenden, die Oberflächensprache sowie Zugriffslevel auswählen und im Arbeitsbereich zwischen verschiedenen Fenstern wechseln.	
2	Symbolleiste	Die Symbolleiste ermöglicht Ihnen schnellen Zugriff auf häufig benötigte Funktionen wie das Öffnen und Speichern von Projekten sowie das Ein- und Ausblenden von Fenstern in der Programmoberfläche.	
3	Projektbaum	Der Projektbaum bildet die Struktur Ihres Antriebsprojekts in Form von Modulen und Antriebsreglern ab. Wählen Sie zuerst über den Projektbaum ein Element aus, um es über das Projektmenü zu bearbeiten.	
4	Projektmenü	Das Projektmenü bietet Ihnen unterschiedliche Funktionen zur Bearbeitung von Projekt, Modul und Antriebsregler an. Das Projektmenü passt sich an das Element an, das Sie im Projektbaum ausgewählt haben.	
5	Arbeitsbereich	Im Arbeitsbereich öffnen sich die verschiedenen Fenster, über die Sie ihr Antriebsprojekt bearbeiten können, wie z. B. der Projektierungsdialog, die Assistenten, die Parameterliste oder das Analysewerkzeug Scope.	
6	Parameterprüfung	Die Parameterprüfung weist auf Auffälligkeiten und Unstimmigkeiten hin, die bei der Plausibilitätsprüfung der berechenbaren Parameter festgestellt wurden.	
7	Meldungen	Die Einträge in den Meldungen protokollieren den Verbindungs- und Kommunikationszustand der Antriebsregler, systemseitig abgefangene Falscheingaben, Fehler beim Öffnen eines Projekts oder Regelverstöße in der grafischen Programmierung.	
8	Variable Parameterlisten	Über variable Parameterlisten können Sie beliebige Parameter zur schnellen Übersicht in individuellen Parameterlisten zusammenstellen.	
9	Statusleiste	In der Statusleiste finden Sie Angaben zur Software-Version und erhalten bei Prozessen wie dem Laden von Projekten weitere Informationen zur Projektdatei, zu den Geräten sowie zum Fortschritt des Prozesses.	

4.1.1 Ansicht konfigurieren

Sie können in der DriveControlSuite die Sichtbarkeit und Anordnung von Bereichen und Fenstern ändern, um beispielsweise bei der Arbeit mit kleineren Bildschirmen den verfügbaren Platz im Arbeitsbereich zu optimieren.

Bereiche ein-/ausblenden

Nutzen Sie die Symbole in der Symbolleiste oder die Einträge im Menü Ansicht, um bestimmte Bereiche in der DriveControlSuite nach Bedarf ein- oder auszublenden.

Symbol	Eintrag	Beschreibung
_	Zurücksetzen	Setzt die Ansicht auf Werkeinstellungen zurück.
E	Projekt	Blendet das Fenster Projekt (Projektbaum, Projektmenü) ein/aus.
	Meldungen	Blendet das Fenster Meldungen ein/aus.
✓	Parameterprüfung	Blendet das Fenster Parameterprüfung ein/aus.
A	Variable Parameterlisten	Blendet das Fenster Variable Parameterlisten ein/aus.

Bereiche anordnen und gruppieren

Sie können die einzelnen Bereiche über Drag-and-Drop abdocken und neu anordnen: Wenn Sie ein abgedocktes Fenster an den Rand der DriveControlSuite ziehen, können Sie es dort in einem farblich hervorgehobenen Bereich entweder neben oder auf einem anderen Fenster loslassen, um es neu anzudocken.

Wenn Sie das Fenster auf einem anderen Fenster loslassen, werden die zwei Bereiche in einem Fenster zusammengefügt, in dem Sie über Register zwischen den Bereichen wechseln können.

02/2025 | ID 443345.03

4.1.2 Navigation über sensitive Schaltbilder

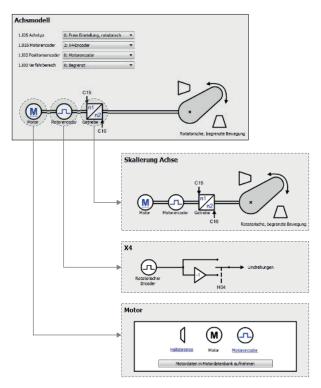
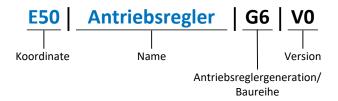


Abb. 2: DriveControlSuite: Navigation über Textlinks und Symbole

Um Ihnen die Bearbeitungsreihenfolge von Soll- und Istwerten, die Verwendung von Signalen oder die Anordnung von Antriebskomponenten grafisch zu verdeutlichen und die Konfiguration zugehöriger Parameter zu erleichtern, werden diese auf den Assistentenseiten des Arbeitsbereichs in Form von Schaltbildern dargestellt.


Blau eingefärbte Textlinks oder klickbare Symbole kennzeichnen programminterne Verlinkungen. Diese verweisen auf die zugehörigen Assistentenseiten und sind somit behilflich, weiterführende Detailseiten mit einem Klick zu erreichen.

4.2 Bedeutung der Parameter

Über Parameter passen Sie die Funktionen des Antriebsreglers an Ihre individuelle Anwendung an. Parameter visualisieren darüber hinaus aktuelle Istwerte (Istgeschwindigkeit, Istdrehmoment ...) und lösen Aktionen wie z. B. Werte speichern, Phasen testen usw. aus.

Parameterkennung-Lesart

Eine Parameterkennung setzt sich aus nachfolgenden Elementen zusammen, wobei auch Kurzformen, d. h. die ausschließliche Angabe einer Koordinate oder die Kombination aus Koordinate und Name möglich sind.

4.2.1 Parametergruppen

Parameter werden thematisch einzelnen Gruppen zugeordnet. Die Antriebsregler unterscheiden nachfolgende Parametergruppen.

Gruppe	Thema
Α	Antriebsregler, Kommunikation, Zykluszeiten
В	Motor
С	Maschine, Geschwindigkeit, Drehmoment/Kraft, Komparatoren
D	Sollwert
Е	Anzeige
F	Klemmen, analoge und digitale Ein- und Ausgänge, Bremse
G	Technologie – Teil 1 (applikationsabhängig)
Н	Encoder
1	Motion (sämtliche Bewegungseinstellungen)
J	Fahrsätze
K	Steuertafel
L	Technologie – Teil 2 (applikationsabhängig)
М	Profile (applikationsabhängig)
N	Zusatzfunktionen (applikationsabhängig; z. B. erweitertes Nockenschaltwerk)
Р	Kundenspezifische Parameter (Programmierung)
Q	Kundenspezifische Parameter, instanzabhängig (Programmierung)
R	Fertigungsdaten von Antriebsregler, Motor, Bremsen, Motoradapter, Getriebe und Getriebemotor
S	Safety (Sicherheitstechnik)
Т	Scope
U	Schutzfunktionen
Z	Störungszähler

Tab. 1: Parametergruppen

4.2.2 Parameterarten und Datentypen

Neben der thematischen Sortierung in einzelne Gruppen gehören alle Parameter einem bestimmten Datentyp und einer Parameterart an. Der Datentyp eines Parameters wird in der Parameterliste, Tabelle Eigenschaften angezeigt. Die Zusammenhänge zwischen Parameterarten, Datentypen und deren Wertebereich entnehmen Sie nachfolgender Tabelle.

Datentyp	Parameterart	Länge	Wertebereich (dezimal)
INT8	Ganzzahl oder Auswahl	1 Byte (vorzeichenbehaftet)	-128 – 127
INT16	Ganzzahl	2 Byte (1 Wort, vorzeichenbehaftet)	-32768 – 32767
INT32	Ganzzahl oder Position	4 Byte (1 Doppelwort, vorzeichenbehaftet)	-2 147 483 648 - 2 147 483 647
BOOL	Binärzahl	1 Bit (intern: LSB in 1 Byte)	0, 1
ВУТЕ	Binärzahl	1 Byte (vorzeichenlos)	0 – 255
WORD	Binärzahl	2 Byte (1 Wort, vorzeichenlos)	0 – 65535
DWORD	Binärzahl oder Parameteradresse	4 Byte (1 Doppelwort, vorzeichenlos)	0 – 4 294 967 295
REAL32 (Typ single nach IEE754)	Fließkommazahl	4 Byte (1 Doppelwort, vorzeichenbehaftet)	$-3,40282 \times 10^{38} \\ -3,40282 \times 10^{38}$
STR8	Text	8 Zeichen	_
STR16	Text	16 Zeichen	_
STR80	Text	80 Zeichen	_

Tab. 2: Parameter: Datentypen, Parameterarten, mögliche Werte

Parameterarten: Verwendung

Ganzzahl, Fließkommazahl
 Bei allgemeinen Rechenprozessen
 Beispiel: Soll- und Istwerte

Auswahl

Zahlenwert, dem eine direkte Bedeutung zugeordnet ist

Beispiel: Quellen für Signale oder Sollwerte

Binärzahl

Bit-orientierte Parameterinformationen, die binär zusammengefasst werden

Beispiel: Steuer- und Statusworte

Position

Ganzzahl in Verbindung mit zugehörigen Einheiten und Nachkommastellen

Beispiel: Ist- und Sollwerte von Positionen

Geschwindigkeit, Beschleunigung, Verzögerung, Ruck
 Fließkommazahl in Verbindung mit zugehörigen Einheiten
 Beispiel: Ist- und Sollwerte für Geschwindigkeit, Beschleunigung, Verzögerung, Ruck

Parameteradresse

Referenzierung eines Parameters

Beispiel: In F40 AO1 Quelle kann beispielsweise E08 Motorgeschwindigkeit parametriert werden

Text

Ausgaben oder Meldungen

4.2.3 Parametertypen

Bei Parametern werden folgende Typen unterschieden.

Parametertyp	Beschreibung	Beispiel
Einfache Parameter	Bestehen aus einer Gruppe und einer Zeile mit einem fest definierten Wert.	A21 Bremswiderstand R: Wert = 100 Ohm
Array-Parameter	Bestehen aus einer Gruppe, einer Zeile und mehreren fortlaufenden (gelisteten) Elementen, die dieselben Eigenschaften, jedoch unterschiedliche Werte besitzen.	 A10 Zugriffslevel A10[0] Zugriffslevel: Wert = Zugriffslevel über Bedienfeld A10[2] Zugriffslevel: Wert = Zugriffslevel über CANopen und EtherCAT A10[4] Zugriffslevel: Wert = Zugriffslevel über PROFINET
Record-Parameter	Bestehen aus einer Gruppe, einer Zeile und mehreren fortlaufenden (gelisteten) Elementen, die unterschiedliche Eigenschaften und unterschiedliche Werte besitzen können.	 A00 Werte speichern A00[0] Starten: Wert = Aktion starten A00[1] Fortschritt: Wert = Aktionsfortschritt anzeigen A00[2] Ergebnis: Wert = Aktionsergebnis anzeigen

Tab. 3: Parametertypen

4.2.4 Parameteraufbau

Jeder Parameter besitzt spezifische Koordinaten, die folgendem Aufbau entsprechen.

- Achse (optional)
 - Bei mehreren Achsen diejenige, der ein Parameter zugeordnet ist; entfällt bei globalen Parametern (Wertebereich: 1 4).
- Gruppe
 - Gruppe, der ein Parameter thematisch angehört (Wertebereich: A-Z).
- Zeile
 - Unterscheidet die Parameter innerhalb einer Parametergruppe (Wertebereich: 0 999).
- Element (optional)
 - Elemente eines Array- oder Record-Parameters (Wertebereich: 0 16000).
- Bit (optional)
 - Auswahl eines einzelnen Bit für die vollständige Datenadressierung; abhängig vom Datentyp (Wertebereich: 0 31).

4.2.5 Parametersichtbarkeit

Die Sichtbarkeit eines Parameters wird über das Zugriffslevel gesteuert, das Sie in der DriveControlSuite einstellen, sowie über die Eigenschaften, die Sie für den jeweiligen Antriebsregler projektieren (z. B. Hardware, Firmware und Applikation). Ein Parameter kann außerdem in Abhängigkeit von weiteren Parametern oder Einstellungen ein- bzw. ausgeblendet werden: Beispielsweise werden die Parameter einer Zusatzfunktion erst eingeblendet, sobald Sie die betreffende Zusatzfunktion aktivieren.

Zugriffslevel

Die Zugriffsmöglichkeiten auf die einzelnen Parameter der Software sind hierarchisch gestaffelt und in einzelne Level unterteilt. Das bedeutet, Parameter können gezielt ausgeblendet und damit verbunden deren Konfigurationsmöglichkeiten ab einer bestimmten Ebene verriegelt werden.

Jeder Parameter besitzt jeweils ein Zugriffslevel für den Lesezugriff (Sichtbarkeit) sowie ein Zugriffslevel für den Schreibzugriff (Editierbarkeit). Folgende Level existieren:

- Level 0
 - Elementare Parameter
- Level 1
 - Wesentliche Parameter einer Applikation
- Level 2
 - Wesentliche Parameter für den Service mit umfangreichen Diagnosemöglichkeiten
- Level 3

Sämtliche für die Inbetriebnahme und Optimierung einer Applikation notwendigen Parameter

Parameter A10 Zugriffslevel regelt den generellen Zugriff auf Parameter:

- Über das Display des Antriebsreglers (A10[0])
- Über CANopen oder EtherCAT (A10[2])
- Über PROFINET (A10[3])

Information

In der DriveControlSuite ausgeblendete Parameter können bei der Kommunikation via Feldbus weder gelesen noch geschrieben werden.

Hardware

Welche Parameter Ihnen in der DriveControlSuite zur Verfügung stehen wird z. B. dadurch bestimmt, welche Baureihe Sie im Projektierungsdialog für den Antriebsregler wählen oder ob Sie ein Optionsmodul projektieren. Grundsätzlich werden Ihnen nur die Parameter angezeigt, die Sie zur Parametrierung der projektierten Hardware benötigen.

Beispielsweise kann ein Antriebsregler einen Encoder über die Klemme X120 auswerten, sofern das entsprechende Klemmenmodul eingebaut wurde. Die zugehörige Auswertung wird über Parameter H120 aktiviert. Dieser Parameter ist jedoch nur dann sichtbar, wenn das Klemmenmodul initial bei der Antriebsprojektierung ausgewählt wurde.

Firmware

Durch die Weiterentwicklung und Pflege der Funktionen für die Antriebsregler werden stets neue Parameter sowie neue Versionen bestehender Parameter in die DriveControlSuite sowie die Firmware implementiert. Die Parameter werden Ihnen in der Software entsprechend der verwendeten DriveControlSuite-Version und der projektierten Firmware-Version des jeweiligen Antriebsreglers angezeigt.

Applikationen

Applikationen unterscheiden sich generell hinsichtlich Funktionen und deren Ansteuerung. Aus diesem Grund stehen mit jeder Applikation unterschiedliche Parameter zur Verfügung.

4.3 Signalquellen

Antriebsregler werden entweder über einen Feldbus, über Klemmen oder über einen Mischbetrieb aus Feldbussystem und Klemmen angesteuert. Ob die Steuersignale und Sollwerte der Applikation über einen Feldbus oder über Klemmen bezogen werden, konfigurieren Sie in der DriveControlSuite über entsprechende Auswahlparameter, die als Signalquellen bezeichnet werden.

Bei einer Ansteuerung über Klemmen werden die jeweiligen analogen oder digitalen Eingänge direkt als Quelle angegeben. Bei einer Ansteuerung über Feldbus werden Parameter als Quellen für Steuersignale und Sollwerte ausgewählt, die Teil des Prozessdaten-Mappings zwischen Steuerung und Antriebsregler sein müssen, um via Feldbus von der Steuerung beschrieben werden zu können.

4.4 Nichtflüchtiges Speichern

Sämtliche Projektierungen, Parametrierungen und damit verbundene Änderungen an Parameterwerten sind nach der Übertragung an den Antriebsregler wirksam, aber nur flüchtig gespeichert.

Speichern auf einem Antriebsregler

Um die Konfiguration nichtflüchtig auf einem Antriebsregler zu speichern, haben Sie folgende Möglichkeiten:

- Konfiguration speichern über Assistent Werte speichern:
 Projektmenü > Bereich Assistenten > projektierte Achse > Assistent Werte speichern:
 Wählen Sie die Aktion Werte speichern
- Konfiguration speichern über die Parameterliste:
 Projektmenü > Bereich Parameterliste > projektierte Achse > Gruppe A: Antriebsregler > A00 Werte speichern:
 Setzen Sie den Parameter A00[0] auf den Wert 1: Aktiv
- Konfiguration speichern über die Bedieneinheit:
 Antriebsregler mit Bedieneinheit: Halten Sie die Speichertaste 3 s lang gedrückt

Speichern auf allen Antriebsreglern innerhalb eines Projekts

Um die Konfiguration nichtflüchtig auf mehreren Antriebsreglern zu speichern, haben Sie folgende Möglichkeiten:

- Konfiguration speichern über die Symbolleiste:
 Symbolleiste > Symbol Werte speichern: Klicken Sie auf das Symbol Werte speichern
- Konfiguration speichern über das Fenster Online-Funktionen:
 Projektmenü > Schaltfläche Online-Verbindung > Fenster Online-Funktionen: Klicken Sie auf Werte speichern (A00)

Information

Schalten Sie den Antriebsregler während des Speicherns nicht aus. Wenn während des Speicherns die Versorgungsspannung des Steuerteils unterbrochen wird, startet der Antriebsregler beim nächsten Einschalten ohne lauffähige Konfiguration. Um den Speichervorgang erfolgreich abzuschließen, muss die Konfiguration erneut auf den Antriebsregler übertragen und nichtflüchtig gespeichert werden.

5 Inbetriebnahme

Nachfolgende Kapitel beschreiben die Inbetriebnahme Ihres Antriebssystems mithilfe der DriveControlSuite.

Für die Komponenten Ihres Achsmodells setzen wir **beispielhaft** einen Synchron-Servomotor mit Encoder EnDat 2.1/2.2 digital und optionaler Bremse voraus. Diese Motoren sind samt allen für die Projektierung relevanten Daten sowohl in der Motordatenbank der DriveControlSuite als auch im sogenannten elektronischen Typenschild hinterlegt. Mit der Auswahl des Motors aus der Datenbank werden – ebenso wie beim Auslesen des Typenschilds – sämtliche Daten in die entsprechenden Parameter übertragen. Eine aufwändige Parametrierung von Motor, Bremse oder Encoder entfällt.

Bei Asynchronmotoren werden die für die Projektierung relevanten Motordaten ebenfalls aus der Motordatenbank übernommen. Alle anderen Motortypen müssen manuell parametriert werden.

Bevor Sie mit der Inbetriebnahme beginnen: Stellen Sie sicher, dass die Systemteilnehmer verkabelt und mit Steuerspannung versorgt sind.

Information

Führen Sie die im Nachfolgenden beschriebenen Schritte unbedingt in der vorgegebenen Reihenfolge aus!

Einige Parameter stehen in Abhängigkeit zueinander und werden Ihnen erst zugänglich, wenn Sie zuvor bestimmte Einstellungen getroffen haben. Folgen Sie den Schritten in der vorgegebenen Reihenfolge, damit Sie die Parametrierung vollständig abschließen können.

5.1 Projekt aufsetzen

Um sämtliche Antriebsregler und Achsen Ihres Antriebssystems über die DriveControlSuite konfigurieren zu können, müssen Sie diese im Rahmen eines Projekts erfassen.

5.1.1 Antriebsregler und Achse projektieren

Erstellen Sie ein neues Projekt und projektieren Sie den ersten Antriebsregler samt zugehöriger Achse.

Information

Stellen Sie sicher, dass Sie im Register Antriebsregler die korrekte Baureihe projektieren. Die projektierte Baureihe kann nachträglich nicht geändert werden.

Neues Projekt anlegen

- 1. Starten Sie die DriveControlSuite.
- 2. Klicken Sie im Startbildschirm auf Neues Projekt erstellen.
 - 🖈 Das neue Projekt wird angelegt und der Projektierungsdialog für den ersten Antriebsregler öffnet sich.
 - ⇒ Die Schaltfläche Antriebsregler ist aktiv.

Antriebsregler projektieren

1. Register Eigenschaften:

Stellen Sie die Beziehung zwischen Ihrem Schaltplan und dem zu projektierenden Antriebsregler in der DriveControlSuite her.

1.1. Referenz:

Definieren Sie das Referenzkennzeichen (Betriebsmittelkennzeichen) des Antriebsreglers.

1.2. Bezeichnung:

Benennen Sie den Antriebsregler eindeutig.

1.3. Version:

Versionieren Sie Ihre Projektierung.

1.4. Beschreibung:

Hinterlegen Sie gegebenenfalls unterstützende Zusatzinformationen (z. B. Änderungshistorie).

2. Register Antriebsregler:

Wählen Sie die Baureihe und den Gerätetyp des Antriebsreglers.

3. Register Optionsmodule:

Projektieren Sie die Optionsmodule des Antriebsreglers.

3.1. Kommunikationsmodul:

Wenn Sie den Antriebsregler über einen Feldbus ansteuern, wählen Sie das entsprechende Kommunikationsmodul.

3.2. Klemmenmodul:

Wenn Sie den Antriebsregler über analoge und digitale Eingänge steuern, wählen Sie das entsprechende Klemmenmodul.

3.3. Sicherheitsmodul:

Wenn der Antriebsregler Teil eines Sicherheitskreises ist, wählen Sie das entsprechende Sicherheitsmodul.

4. Register Gerätesteuerung:

Projektieren Sie die grundlegende Ansteuerung des Antriebsreglers.

4.1. Gerätesteuerung:

Wählen Sie die Gerätesteuerung Drive Based.

4.2. Prozessdaten Rx, Prozessdaten Tx:

Wenn Sie den Antriebsregler über einen Feldbus ansteuern, wählen Sie die entsprechenden Empfangs- und Sende-Prozessdaten.

5 | Inbetriebnahme

Achse projektieren

- 1. Klicken Sie auf Achse 1.
- 2. Register Eigenschaften:

Stellen Sie die Beziehung zwischen Ihrem Schaltplan und der zu projektierenden Achse in der DriveControlSuite her.

2.1. Referenz:

Definieren Sie das Referenzkennzeichen (Betriebsmittelkennzeichen) der Achse.

2.2. Bezeichnung:

Benennen Sie die Achse eindeutig.

2.3. Version:

Versionieren Sie Ihre Projektierung.

2.4. Beschreibung:

Hinterlegen Sie gegebenenfalls unterstützende Zusatzinformationen (z. B. Änderungshistorie).

3. Register Applikation:

Wählen Sie die Applikation Drive Based Center Winder.

4. Register Motor:

Wählen Sie den Motortyp, den Sie über diese Achse betreiben. Wenn Sie mit Motoren von Fremdanbietern arbeiten, geben Sie die zugehörigen Motordaten zu einem späteren Zeitpunkt an.

5. Bestätigen Sie mit OK.

5.1.2 Sicherheitstechnik einrichten

Wenn der Antriebsregler Teil eines Sicherheitskreises ist, müssen Sie im nächsten Schritt die Sicherheitstechnik gemäß der im zugehörigen Handbuch beschriebenen Inbetriebnahmeschritte einrichten (siehe Weiterführende Informationen [* 164]).

5.1.3 Weitere Antriebsregler und Module anlegen

In der DriveControlSuite sind innerhalb eines Projekts alle Antriebsregler über Module gruppiert. Wenn Sie Ihrem Projekt einen neuen Antriebsregler hinzufügen, weisen Sie diesen immer einem bestehenden Modul zu. Gruppieren Sie beispielsweise Antriebsregler in einem Modul, wenn diese sich im selben Schaltschrank befinden oder gemeinsam denselben Maschinenteil betreiben.

Antriebsregler anlegen

- 1. Wählen Sie im Projektbaum Ihr Projekt P1 > Modul M1 > Kontextmenü Neuen Antriebsregler anlegen.
 - ⇒ Der Antriebsregler wird im Projektbaum angelegt und der Projektierungsdialog öffnet sich.
- 2. Projektieren Sie den Antriebsregler wie in Antriebsregler und Achse projektieren [▶ 21] beschrieben.
- 3. Wiederholen Sie die Schritte für alle weiteren Antriebsregler, die Sie projektieren möchten.

Modul anlegen

- 1. Wählen Sie im Projektbaum Ihr Projekt P1 > Kontextmenü Neues Modul anlegen.
 - ⇒ Das Modul wird im Projektbaum angelegt.
- 2. Projektieren Sie das Modul wie in $\underline{\text{Modul projektieren }}$ beschrieben.
- 3. Wiederholen Sie die Schritte für alle weiteren Module, die Sie projektieren möchten.

Benennen Sie Ihr Modul eindeutig, geben Sie das Referenzkennzeichen an und hinterlegen Sie optional Zusatzinformationen wie Version und Änderungshistorie des Moduls.

- 1. Markieren Sie im Projektbaum das Modul und klicken Sie im Projektmenü auf Projektierung.
 - ⇒ Der Projektierungsdialog für das Modul öffnet sich.
- 2. Stellen Sie die Beziehung zwischen Ihrem Schaltplan und dem Modul in der DriveControlSuite her.
 - 2.1. Referenz:

Definieren Sie das Referenzkennzeichen (Betriebsmittelkennzeichen) des Moduls.

2.2. Bezeichnung:

Benennen Sie das Modul eindeutig.

2.3. Version:

Versionieren Sie das Modul.

2.4. Beschreibung:

Hinterlegen Sie gegebenenfalls unterstützende Zusatzinformationen (z. B. Änderungshistorie).

3. Bestätigen Sie mit OK.

5.1.5 Projekt projektieren

Benennen Sie Ihr Projekt eindeutig, geben Sie das Referenzkennzeichen an und hinterlegen Sie optional Zusatzinformationen wie Version und Änderungshistorie des Projekts.

- 1. Markieren Sie im Projektbaum das Projekt und klicken Sie im Projektmenü auf Projektierung.
 - ⇒ Der Projektierungsdialog für das Projekt öffnet sich.
- 2. Stellen Sie die Beziehung zwischen Ihrem Schaltplan und dem Projekt in der DriveControlSuite her.
 - 2.1. Referenz:

Definieren Sie das Referenzkennzeichen (Betriebsmittelkennzeichen) des Projekts.

2.2. Bezeichnung:

Benennen Sie das Projekt eindeutig.

2.3. Version:

Versionieren Sie das Projekt.

2.4. Beschreibung:

Hinterlegen Sie gegebenenfalls unterstützende Zusatzinformationen (z. B. Änderungshistorie).

3. Bestätigen Sie mit OK.

5 | Inbetriebnahme STÖBER

5.2 Mechanisches Achsmodell abbilden

Um Ihren realen Antriebsstrang mit einem oder mehreren Antriebsreglern in Betrieb nehmen zu können, müssen Sie Ihre vollständige mechanische Umgebung in der DriveControlSuite abbilden.

STÖBER Antriebsregler der 6. Generation sind speziell für die Kommunikation zwischen Antriebsregler und Steuerung auf Basis der realen Größen am Abtrieb entwickelt (° der wirklichen Achsbewegung). Die Skalierung des Achsmodells wird durch die Firmware des Antriebsreglers unabhängig vom Encodertyp rundungsfehler- und driftfrei gerechnet.

5.2.1 Motor parametrieren

Sie haben einen Synchron-Servomotor mit Encoder EnDat 2.1/2.2 digital und optionaler Bremse projektiert.

Mit der Projektierung des entsprechenden Motors werden automatisch Begrenzungswerte für Ströme und Drehmomente sowie zugehörige Temperaturdaten in die jeweiligen Parameter der einzelnen Assistenten übertragen. Zeitgleich werden alle zusätzlichen Daten zu Bremse und Encoder übernommen.

Motorschutz

Der Antriebsregler verfügt über ein i²t-Modell des Motors, ein Rechenmodell für die thermische Überwachung des Motors. Um es zu aktivieren und die Schutzfunktion einzurichten, nehmen Sie – abweichend von den Voreinstellungen – folgende Einstellungen vor: U10 = 2: Warnung und U11 = 1,00 s. Dieses Modell kann alternativ oder ergänzend zu einer Motortemperaturüberwachung verwendet werden.

5.2.2 Achsmodell parametrieren

Parametrieren Sie den Aufbau Ihres Antriebs in dieser Reihenfolge:

- Achsmodell definieren
- Achse skalieren
- Positions- und Geschwindigkeitsfenster parametrieren
- Achse begrenzen (optional)
 - Position begrenzen
 - Geschwindigkeit, Beschleunigung und Ruck begrenzen
 - Drehmoment und Kraft begrenzen

STÖBER 5 | Inbetriebnahme

5.2.2.1 Achsmodell definieren

1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.

- 2. Wählen Sie Assistent Achsmodell.
- 3. B26 Motorencoder:

Definieren Sie die Schnittstelle, an der der Motorencoder angeschlossen ist.

4. IO2 Positionsencoder (optional):

Definieren Sie die Schnittstelle, an der der Positionsencoder angeschlossen ist.

Information

Bei Applikationen des Typs Drive Based Center Winder sind der Achstyp sowie der Verfahrbereich durch die Applikation voreingestellt und können nicht nachträglich geändert werden (Achstyp: I05 = 2: Rotatorisch; Verfahrbereich: I00 = 1: Endlos; Umlauflänge: I01 = 360°).

Information

Wenn Sie für IO2 Positionsencoder nichts anderes parametrieren, wird standardmäßig B26 Motorencoder für die Positionsregelung verwendet.

5.2.2.2 Achse skalieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Achsmodell > Achse: Skalierung.
- 3. Skalieren Sie die Achse, indem Sie die Gesamtübersetzung zwischen Motor und Abtrieb konfigurieren. Um Ihnen die Skalierung zu erleichtern, steht Ihnen der Skalierungsrechner Umrechnung Positionen, Geschwindigkeiten, Beschleunigungen, Drehmoment/Kraft zur Verfügung, der die Auswirkungen von geänderten Bewegungsgrößen auf das gesamte System berechnet.
- 4. I01 Umlauflänge:

Wenn Sie für I00 Verfahrbereich = 1: Endlos gewählt haben, definieren Sie die Umlauflänge.

5. I03 Achs-Polarität:

Definieren Sie mit der Polarität die Interpretationsrichtung zwischen der Achsbewegung und der Motorbewegung.

Information

Bei Applikationen des Typs Drive Based Center Winder sind der Achstyp sowie der Verfahrbereich durch die Applikation voreingestellt und können nicht nachträglich geändert werden (Achstyp: I05 = 2: Rotatorisch; Verfahrbereich: I00 = 1: Endlos; Umlauflänge: I01 = 360°).

5.2.2.3 Geschwindigkeitsfenster parametrieren

Geben Sie Geschwindigkeitszonen für Sollwerte an, indem Sie dazu einen Rahmenwert für das Erreichen einer Geschwindigkeit parametrieren.

- 1. Wählen Sie Assistent Achsmodell > Fenster Position, Geschwindigkeit.
- 2. C40 Geschwindigkeits-Fenster:

Parametrieren Sie ein Toleranzfenster für Geschwindigkeitsprüfungen.

5.2.2.4 Achse begrenzen

Begrenzen Sie optional die maximal zulässigen Bewegungsgrößen Position, Geschwindigkeit, Beschleunigung, Ruck sowie Drehmoment/Kraft Ihrem Anwendungsfall entsprechend.

Information

Um Ihnen die Skalierung sowie Begrenzung der Achse zu erleichtern, steht Ihnen im Assistenten Achsmodell > Achse: Skalierung der Skalierungsrechner **Umrechnung Position, Geschwindigkeiten, Beschleunigungen, Drehmoment/Kraft** zur Verfügung, der die Auswirkungen von geänderten Bewegungsgrößen auf das gesamte System berechnet. Mit dem Skalierungsrechner können Sie Werte für Bewegungsgrößen an Motor, Getriebeabtrieb und Achse eingeben, um die Werte auf alle anderen Stellen im Achsmodell umzurechnen.

Position begrenzen

Um den Verfahrbereich der Achse zu sichern, begrenzen Sie optional die zulässigen Positionen durch Hardware-Endschalter.

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Achsmodell > Begrenzung: Position.
- 3. I101 Quelle positiver /Endschalter, I102 Quelle negativer /Endschalter: Um den Verfahrbereich der Achse über Hardware-Endschaltern in positiver bzw. negativer Bewegungsrichtung zu begrenzen, wählen Sie die Quelle des digitalen Signals, über das ein Endschalter am positiven bzw. negativen Ende des Verfahrbereichs ausgewertet wird.
 - 3.1. Wenn ein Feldbus als Quelle dient, wählen Sie 2: Parameter.
 - 3.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

Geschwindigkeit, Beschleunigung, Ruck begrenzen

Begrenzen Sie optional die Bewegungsgrößen Geschwindigkeit, Beschleunigung und Ruck und definieren Sie die Schnellhaltverzögerung Ihrem Anwendungsfall entsprechend. Die Default-Werte sind auf langsame Geschwindigkeiten ohne Getriebe ausgelegt.

- 1. Wählen Sie Assistent Motor.
- 2. B83 v-max Motor:

Ermitteln Sie die maximal zulässige Geschwindigkeit des Motors.

- 3. Wählen Sie Assistent Achsmodell > Achse: Skalierung.
- Bereich Umrechnung Positionen, Geschwindigkeiten, Beschleunigungen, Drehhmoment/Kraft: Ermitteln Sie mithilfe des Skalierungsrechners anhand der maximal zulässigen Geschwindigkeit des Motors die maximal zulässige Geschwindigkeit des Abtriebs.
- 5. Wählen Sie Assistent Achsmodell > Begrenzung: Geschwindigkeit, Beschleunigung, Ruck.
- 6. I10 Maximale Geschwindigkeit:

Definieren Sie die maximal zulässige Geschwindigkeit des Abtriebs.

7. I11 Maximale Beschleunigung:

Definieren Sie die maximal zulässige Beschleunigung des Abtriebs.

8. I16 Maximaler Ruck:

Definieren Sie den maximal zulässigen Ruck des Abtriebs.

9. I17 Schnellhaltverzögerung:

Definieren Sie die gewünschte Schnellhaltverzögerung des Abtriebs.

02/2025 | ID 443345.03

Drehmoment/Kraft begrenzen

Begrenzen Sie optional Drehmoment/Kraft Ihrem Anwendungsfall entsprechend. Die Default-Werte berücksichtigen den Nennbetrieb samt Überlastreserven.

- 1. Wählen Sie Assistent Achsmodell > Begrenzung: Drehmoment/Kraft.
- 2. C03 Maximales positives M/F, C05 Maximales negatives M/F:

 Definieren Sie das maximal zulässige Solldrehmoment/die maximal zulässige Sollkraft.
- C08 Maximales M/F beim Schnellhalt:
 Definieren Sie das maximal zulässige Solldrehmoment/die maximal zulässige Sollkraft bei Schnellhalt und bei antriebsgeführtem Not-Halt SS1, SS1 und SS2.

5 | Inbetriebnahme STÖBER

5.3 Absolute Position referenzieren

Bei der Inbetriebnahme einer Anlage mit Positionsmesssystemen muss ermittelt werden, in welcher Relation eine gemessene zu einer realen Achsposition steht, um mit absoluten Positionen arbeiten zu können.

Wenn Sie mit absoluten Positionen arbeiten, referenzieren Sie jetzt die Achse. Andernfalls fahren Sie fort, indem Sie die anwendungsspezifischen Bedingungen und Reaktionen der Gerätesteuerung Drive Based parametrieren.

5.3.1 Referenziermethode definieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Referenzierung.
- I30 Referenziertyp, I31 Referenzierfahrt Richtung, I35 Referenzierung mit Nullimpuls:
 Definieren Sie die Kenngrößen für die Referenzierung.
 Für Informationen zu möglichen Kombinationen aus den genannten Kenngrößen sowie für Detailbeschreibungen zu den einzelnen Referenziermethoden siehe Referenziermethoden [*].125].
- 4. I43 Fahre zur Referenzposition:

Wenn die Achse nach einer Referenzfahrt automatisch auf die referenzierte Position fahren soll, setzen Sie diesen Parameter auf 1: Aktiv.

5.3.2 Referenzschalter parametrieren

Wenn Sie mit absoluten Positionen arbeiten und eine Referenzposition während einer Referenzierfahrt über den Referenzschalter ermitteln möchten, gehen Sie wie folgt vor.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Applikation: Quelle.
- 2. I103 Quelle Referenzschalter:
 - 2.1. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Bit 3 des Steuerworts I210 der Applikation als Quelle dient, wählen Sie 2: Parameter.

5.3.3 Referenz setzen

Wenn Sie mit absoluten Positionen arbeiten, und Sie ohne Referenzierfahrt referenzieren möchten, wird der Wert der aktuellen Istposition über das Signal Referenz setzen direkt als Parameterwert aus 134 übernommen.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Applikation: Quelle.
- 2. I111 Quelle Referenz setzen:
 - 2.1. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Bit 11 des Steuerworts I210 der Applikation Drive Based Center Winder als Signalquelle dient, wählen Sie 2: Parameter.

02/2025 | ID 443345.03

5.4 Gerätesteuerung Drive Based parametrieren

Die Gerätesteuerung Drive Based beschreibt den Steuerungsablauf eines Antriebsreglers anhand einer Zustandsmaschine, d. h., ein Antriebsregler wechselt seinen Zustand aufgrund eines Ereignisses. Manche der an die Zustandsübergänge gekoppelten Bedingungen und Reaktionen sind anwendungsspezifisch beeinflussbar – beispielsweise ist es möglich, das Ende eines Schnellhalts oder Freigabeverzögerungen auf den jeweiligen Anwendungsfall zugeschnitten zu definieren.

Detaillierte Informationen zur Gerätesteuerung und Gerätezustandsmaschine Drive Based entnehmen Sie Kapitel Gerätesteuerung Drive Based [> 152].

5.4.1 Übergangsbedingungen parametrieren

- ✓ Sie haben einen Antriebsregler mit der Gerätesteuerung Drive Based projektiert.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Gerätesteuerung Drive Based.
- 3. A34 Autostart:

Wenn der Antriebsregler nach dem Zustand Einschaltsperre direkt in den Zustand Betrieb freigegeben wechseln soll, aktivieren Sie diesen Parameter.

4. A43 Freigabe Ein-/Ausschaltverzögerung

Wenn Sie eventuelle Stör- oder Testimpulse am Freigabeeingang ausblenden müssen, geben Sie die maximale interne Ein- und Ausschaltverzögerung an.

5. A44 Schnellhalt bei Freigabe-Aus:

Wenn der Antrieb bei einer deaktivierten Freigabe mit einem Schnellhalt gestoppt werden soll, aktivieren Sie diesen Parameter.

6. A60 Quelle Zusatzfreigabe:

Wenn Sie mit mehreren Freigabesignalen arbeiten, definieren Sie die Quelle der zusätzlichen Signale in diesem Parameter.

7. A29 Schnellhalt bei Störung:

Wenn der Antrieb im Störfall – sofern möglich – mit einem Schnellhalt gestoppt werden soll, aktivieren Sie diesen Parameter. Ist der Parameter deaktiviert, wird die Bewegung der Achse nicht mehr durch den Antriebsregler gesteuert.

8. A39 Maximale Schnellhaltdauer bei Freigabe-Aus:

Wenn Sie für Parameter A44 = 1: Aktiv gewählt haben, definieren Sie in A39 die maximale Zeitspanne, nach deren Ablauf das Leistungsteil ausgeschaltet wird.

9. A45 Schnellhalt-Ende:

Definieren Sie in diesem Parameter, ob ein Schnellhalt mit dem Stillstand des Antriebs oder durch das Abbrechen der Schnellhaltanforderung als beendet gilt.

10. A62 Quelle /Schnellhalt:

Definieren Sie in diesem Parameter, wie ein Schnellhalt ausgelöst wird.

11. E48 Gerätezustand:

Zeigt den aktuellen Zustand des Antriebsreglers.

02/2025 | ID 443345.0

5.5 Konfiguration übertragen und speichern

Um die Konfiguration auf einen oder mehrere Antriebsregler zu übertragen und zu speichern, müssen Sie Ihren PC und die Antriebsregler über das Netzwerk verbinden.

⚠ WARNUNG!

Personen- und Sachschaden durch Achsbewegung!

Wenn eine Online-Verbindung der DriveControlSuite zum Antriebsregler besteht, können Änderungen der Konfiguration zu unerwarteten Achsbewegungen führen.

- Ändern Sie die Konfiguration nur, wenn Sie Blickkontakt zur Achse haben.
- Stellen Sie sicher, dass sich keine Personen oder Gegenstände im Verfahrbereich befinden.
- Bei Zugriff über Fernwartung muss eine Kommunikationsverbindung zwischen Ihnen und einer Person vor Ort mit Blickkontakt zur Achse bestehen.

Information

Bei der Suche werden via IPv4-Limited-Broadcast alle Antriebsregler innerhalb der Broadcast-Domain ausfindig gemacht.

Voraussetzungen für das Auffinden eines Antriebsreglers im Netzwerk:

- Netzwerk unterstützt IPv4-Limited-Broadcast
- Alle Antriebsregler und der PC sind im selben Subnetz (Broadcast-Domain)

5.5.1 Konfiguration übertragen

Die Schritte für die Übertragung der Konfiguration variieren in Abhängigkeit von der Sicherheitstechnik.

Antriebsregler ohne Option SE6 (erweiterte Sicherheitstechnik)

- ✓ Die Antriebsregler sind eingeschaltet und im Netzwerk auffindbar.
- 1. Markieren Sie im Projektbaum das Modul, unter dem Sie Ihre Antriebsregler erfasst haben, und klicken Sie im Projektmenü auf Online-Verbindung.
 - ⇒ Der Dialog Verbindung hinzufügen öffnet sich. Alle via IPv4-Limited-Broadcast gefundenen Antriebsregler werden angezeigt.
- 2. Register Direktverbindung, Spalte IP-Adresse:
 - Aktivieren Sie die betreffenden IP-Adressen und bestätigen Sie Ihre Auswahl mit OK.
 - ⇒ Das Fenster Online-Funktionen öffnet sich. Sämtliche Antriebsregler, die über die ausgewählten IP-Adressen angeschlossen sind, werden angezeigt.
- 3. Wählen Sie das Modul und den Antriebsregler, auf den Sie eine Konfiguration übertragen möchten. Ändern Sie die Auswahl der Übertragungsart von Lesen in Senden.
- Ändern Sie die Auswahl Neuen Antriebsregler anlegen:
 Wählen Sie die Konfiguration, die Sie an den Antriebsregler übertragen möchten.
- 5. Wiederholen Sie die Schritte 3 und 4 für alle weiteren Antriebsregler, auf die Sie eine Konfiguration übertragen möchten.
- 6. Register Online:
 - Klicken Sie auf Online-Verbindungen herstellen.
- ⇒ Die Konfigurationen werden an die Antriebsregler übertragen.

Antriebsregler mit Option SE6 (erweiterte Sicherheitstechnik)

- ✓ Die Antriebsregler sind eingeschaltet und im Netzwerk auffindbar.
- 1. Markieren Sie im Projektbaum das Modul, unter dem Sie Ihre Antriebsregler erfasst haben, und klicken Sie im Projektmenü auf Online-Verbindung.
 - ⇒ Der Dialog Verbindung hinzufügen öffnet sich. Alle via IPv4-Limited-Broadcast gefundenen Antriebsregler werden angezeigt.
- 2. Register Direktverbindung, Spalte IP-Adresse:

Aktivieren Sie die betreffenden IP-Adressen und bestätigen Sie Ihre Auswahl mit OK.

- ⇒ Das Fenster Online-Funktionen öffnet sich. Sämtliche Antriebsregler, die über die ausgewählten IP-Adressen angeschlossen sind, werden angezeigt.
- 3. Wählen Sie das Modul und den Antriebsregler, auf den Sie eine Konfiguration übertragen möchten. Ändern Sie die Auswahl der Übertragungsart von Lesen in Senden.
- 4. Ändern Sie die Auswahl Neuen Antriebsregler anlegen:
 - Wählen Sie die Konfiguration, die Sie an den Antriebsregler übertragen möchten.
- 5. Wiederholen Sie die Schritte 3 und 4 für alle weiteren Antriebsregler, auf die Sie eine Konfiguration übertragen möchten.
- 6. Register Online:
 - Klicken Sie auf Online-Verbindungen herstellen.
- ⇒ Die Konfigurationen werden an die Antriebsregler übertragen.
- ⇒ Das Konfigurations-Tool PASmotion Safety Configurator öffnet sich.
- 1. Navigieren Sie in der Projektverwaltung von PASmotion Safety Configurator zum Sicherheitsmodul des Antriebsreglers und öffnen Sie dieses mit einem Doppelklick.
 - ⇒ Der Assistent zur Gerätesynchronisierung öffnet sich.
 - ⇒ Projektkonfiguration und Gerätekonfiguration werden gegeneinander geprüft.
- 2. Stimmen die Konfigurationen überein, klicken Sie nach abgeschlossener Gerätesynchronisierung auf Fertig.
- 3. Optional: Stimmen die Konfigurationen nicht überein, klicken Sie nach abgeschlossener Gerätesynchronisierung auf Weiter.
 - 3.1. Bestätigen Sie die Seriennummer des Sicherheitsmoduls und klicken Sie auf Weiter.
 - 3.2. Geben Sie das Passwort für die Konfiguration auf dem Sicherheitsmodul ein und klicken Sie auf Weiter.
 - 3.3. Klicken Sie auf Download.
 - ⇒ Die Projektkonfiguration wird an das Sicherheitsmodul übertragen.
 - 3.4. Klicken Sie nach erfolgreicher Übertragung auf Fertig.
- 4. Startseite, CRC Sicherheitskonfiguration:

Dokumentieren Sie die Prüfsumme der Sicherheitsfunktionen in der Maschinendokumentation.

- 5. Wiederholen Sie die Schritte für jedes weitere Sicherheitsmodul in Ihrem Projekt.
- 6. Beenden Sie PASmotion Safety Configurator.
- ⇒ Die Übertragung der Konfiguration ist abgeschlossen.

Information

Wenn Sie das Passwort für die Konfiguration auf dem Sicherheitsmodul nicht kennen und eine neue Sicherheitskonfiguration senden möchten, können Sie in der DriveControlSuite über Parameter S33 die Sicherheitskonfiguration auf dem Sicherheitsmodul löschen.

5 | Inbetriebnahme

5 | Inbetriebnahme STÖBER

5.5.2 Konfiguration speichern

- ✓ Sie haben die Konfiguration erfolgreich übertragen.
- 1. Fenster Online-Funktionen, Register Online, Bereich Aktionen für Antriebsregler im Online-Betrieb: Klicken Sie auf Werte speichern (A00).
 - ⇒ Das Fenster Werte speichern (A00) öffnet sich.
- 2. Wählen Sie, auf welchen Antriebsreglern Sie die Konfiguration speichern möchten.
- 3. Klicken Sie auf Aktion starten.
 - ⇒ Die Konfiguration wird nichtflüchtig auf den Antriebsreglern gespeichert.
- 4. Schließen Sie das Fenster Werte speichern (A00).

Information

Damit die Konfiguration auf dem Antriebsregler wirksam wird, ist in bestimmten Fällen ein Neustart erforderlich, beispielweise nach dem erstmaligen Speichern der Konfiguration auf dem Antriebsregler sowie bei Änderungen an der Firmware oder am Prozessdaten-Mapping.

Antriebsregler neu starten

- ✓ Sie haben die Konfiguration nichtflüchtig auf dem Antriebsregler gespeichert.
- 1. Fenster Online-Funktionen, Register Online: Klicken Sie auf Neu starten (A09).
 - ⇒ Das Fenster Neu starten (A09) öffnet sich.
- 2. Wählen Sie, welche der verbundenen Antriebsregler Sie neu starten möchten.
- 3. Klicken Sie auf Aktion starten.
- 4. Bestätigen Sie den Sicherheitshinweis mit OK.
 - ⇒ Das Fenster Neu starten (A09) schließt sich.
- ⇒ Die Feldbuskommunikation und die Verbindung zwischen DriveControlSuite und Antriebsreglern werden unterbrochen.
- ⇒ Die gewählten Antriebsregler starten neu.

5.6 Konfiguration testen

Nachdem Sie die Konfiguration auf den Antriebsregler übertragen haben, prüfen Sie zunächst Ihr projektiertes Achsmodell sowie die parametrierten elektrischen und mechanischen Daten auf Plausibilität, bevor Sie mit der Parametrierung fortfahren.

Sie können die Konfiguration einfach und schnell über die DriveControlSuite oder alternativ direkt über die Bedieneinheit des Antriebsreglers testen.

5.6.1 Tippbetrieb testen

Steuertafel Tippen stellt Ihnen verschiedene Befehle für den Tippbetrieb zur Verfügung, über die Sie die Konfiguration Ihres projektierten Achsmodells auf Plausibilität prüfen können.

Information

Stellen Sie sicher, dass die Werte der Steuertafel mit Ihrem projektierten Achsmodell kompatibel sind, um brauchbare Testergebnisse zu erhalten, anhand derer Sie Ihre Konfiguration für die jeweilige Achse optimieren können.

Unter Assistent Achsmodell > Achse: Skalierung steht Ihnen der Skalierungsgrechner zur Verfügung, um die Werte für die Steuertafel entsprechend Ihres projektierten Achsmodells umzurechnen.

⚠ WARNUNG!

Personen- und Sachschaden durch Achsbewegung!

Mit Aktivieren der Steuertafel haben Sie mittels der DriveControlSuite die alleinige Kontrolle über die Bewegungen der Achse. Wenn Sie eine Steuerung verwenden, werden mit Aktivieren der Steuertafel die Achsbewegungen nicht mehr von dieser überwacht. Die Steuerung kann nicht eingreifen, um Kollisionen zu verhindern. Mit Deaktivieren der Steuertafel übernimmt die Steuerung wieder die Kontrolle und es kann zu unerwarteten Achsbewegungen kommen.

- Wechseln Sie bei aktiver Steuertafel nicht in andere Fenster.
- Nutzen Sie die Steuertafel nur, wenn Sie Blickkontakt zur Achse haben.
- Stellen Sie sicher, dass sich keine Personen oder Gegenstände im Verfahrbereich befinden.
- Bei Zugriff über Fernwartung muss eine Kommunikationsverbindung zwischen Ihnen und einer Person vor Ort mit Blickkontakt zur Achse bestehen.

5 | Inbetriebnahme STÖBER

Konfiguration über Steuertafel Tippen testen

- ✓ Es besteht eine Online-Verbindung zwischen DriveControlSuite und Antriebsregler.
- ✓ Sie haben die Konfiguration erfolgreich auf dem Antriebsregler gespeichert.
- ✓ Es ist keine Sicherheitsfunktion aktiv.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Steuertafel Tippen.
- 3. Klicken Sie auf Steuertafel Ein und anschließend auf Freigabe.
 - ⇒ Die Achse wird über die aktive Steuertafel kontrolliert.
- 4. Prüfen Sie die Default-Werte der Steuertafel und passen Sie diese gegebenenfalls auf Ihr projektiertes Achsmodell an.
- 5. Um die Konfiguration Ihrer projektierten Achse auf Bewegungsrichtung, Geschwindigkeit etc. zu prüfen, verfahren Sie die Achse schrittweise über die Schaltflächen Tip+, Tip-, Tip-Step+ und Tip-Step-.
- 6. Nutzen Sie Ihre Testergebnisse, um gegebenenfalls Ihre Konfiguration zu optimieren.
- 7. Um die Steuertafel zu deaktivieren, klicken Sie auf Steuertafel aus.

Information

Tip+ und Tip- bewirken eine kontinuierliche Handfahrt in positiver oder negativer Richtung. Tip-Step+ und Tip-Step-verfahren die Achse relativ zur aktuellen Istposition um das in I14 angegebene Schrittmaß.

Tip+ und Tip- besitzen eine höhere Priorität als Tip-Step+ und Tip-Step-.

STÖBER 5 | Inbetriebnahme

5.6.2 Bewegungskommandos testen

Steuertafel Motion stellt Ihnen einen Standardsatz an Bewegungskommandos zu Verfügung, über den Sie die Grundbewegungen Ihrer Achse prüfen können. Der Kommandosatz ist an den PLCopen-Standard angelehnt und wird um herstellerspezifische Bewegungskommandos ergänzt.

Wenn Sie mit absoluten Positionsmesssystemen arbeiten und das Bewegungskommando MC_MoveAbsolute zum Testen benötigen, müssen Sie im Vorfeld eine absolute Position referenzieren (siehe Absolute Position referenzieren [▶ 28]).

Information

Stellen Sie sicher, dass die Werte der Steuertafel mit Ihrem projektierten Achsmodell kompatibel sind, um brauchbare Testergebnisse zu erhalten, anhand derer Sie Ihre Konfiguration für die jeweilige Achse optimieren können.

Unter Assistent Achsmodell > Achse: Skalierung steht Ihnen der Skalierungsgrechner zur Verfügung, um die Werte für die Steuertafel entsprechend Ihres projektierten Achsmodells umzurechnen.

Personen- und Sachschaden durch Achsbewegung!

Mit Aktivieren der Steuertafel haben Sie mittels der DriveControlSuite die alleinige Kontrolle über die Bewegungen der Achse. Wenn Sie eine Steuerung verwenden, werden mit Aktivieren der Steuertafel die Achsbewegungen nicht mehr von dieser überwacht. Die Steuerung kann nicht eingreifen, um Kollisionen zu verhindern. Mit Deaktivieren der Steuertafel übernimmt die Steuerung wieder die Kontrolle und es kann zu unerwarteten Achsbewegungen kommen.

- Wechseln Sie bei aktiver Steuertafel nicht in andere Fenster.
- Nutzen Sie die Steuertafel nur, wenn Sie Blickkontakt zur Achse haben.
- Stellen Sie sicher, dass sich keine Personen oder Gegenstände im Verfahrbereich befinden.
- Bei Zugriff über Fernwartung muss eine Kommunikationsverbindung zwischen Ihnen und einer Person vor Ort mit Blickkontakt zur Achse bestehen.

Konfiguration mit Steuertafel Motion testen

- ✓ Es besteht eine Online-Verbindung zwischen DriveControlSuite und Antriebsregler.
- ✓ Sie haben die Konfiguration erfolgreich auf dem Antriebsregler gespeichert.
- ✓ Es ist keine Sicherheitsfunktion aktiv.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Steuertafel Motion.
- 3. Klicken Sie auf Steuertafel Ein und anschließend auf Freigabe.
 - ⇒ Die Achse wird über die aktive Steuertafel kontrolliert.
- 4. Prüfen Sie die Default-Werte der Steuertafel und passen Sie diese gegebenenfalls auf Ihr projektiertes Achsmodell an.
- 5. K402 Kommando:
 - Wählen Sie das gewünschte Kommando und definieren Sie Position, Geschwindigkeit, Beschleunigung, Verzögerung und Ruck.
- 6. Führen Sie das Kommando mit einem Klick auf Start aus.
- 7. Um die Konfiguration Ihrer projektierten Achse auf Bewegungsrichtung, Geschwindigkeit etc. zu prüfen, verfahren Sie die Achse gezielt über die einzelnen Kommandos.
- 8. Nutzen Sie Ihre Testergebnisse, um gegebenenfalls Ihre Konfiguration zu optimieren.
- 9. Um die Steuertafel zu deaktivieren, klicken Sie auf Steuertafel aus.

5 | Inbetriebnahme STÖBER

5.7 Applikation Drive Based Center Winder parametrieren

Die Applikation Drive Based Center Winder stellt Ihnen zwei Betriebsarten zur Verfügung: Betriebsart Zentralwickler und Betriebsart Kommando.

Während die Betriebsart Zentralwickler sich auf das zum Wickeln wesentliche Bewegungskommando 30: MC_Winder konzentriert, stellt die Betriebsart Kommando Ihnen zusätzlich einen an PLCopen angelehnten Standardsatz an Bewegungskommandos zur Verfügung, der um eigene Bewegungskommandos ergänzt wird. Welche Betriebsart für Ihre Applikation am besten geeignet ist, hängt von Ihrem Anwendungsfall ab: Wenn Sie die Bewegungsabläufe über eine Steuerung koordinieren und unterschiedliche Bewegungskommandos benötigen, nutzen Sie die Betriebsart Kommando. Wenn Sie keine Steuerung verwenden oder lediglich das Bewegungskommando zum Wickeln benötigen, wählen Sie die Betriebsart Zentralwickler.

Die allgemeinen Bewegungsgrößen sind im betriebsartunabhängigen Assistenten Quellen gruppiert. Je Betriebsart stehen Ihnen außerdem eigene Assistenten zur Verfügung, über die Sie die betriebsartspezifischen Bewegungsgrößen parametrieren können. Welche der allgemeinen sowie betriebsartspezifischen Bewegungsgrößen Sie parametrieren müssen, hängt von Ihrem Antriebsprojekt ab.

Wenn Sie für Ihr Projekt Sollwerte aus externen Quellen nutzen möchten, parametrieren Sie diese im ersten Schritt. Fahren Sie dann mit den betriebsartspezifischen Bewegungsgrößen in den jeweiligen Assistenten fort.

5.7.1 Allgemeine Bewegungsgrößen und Signalquellen

Parametrieren Sie zunächst die allgemeinen Bewegungsgrößen und Signalquellen, bevor Sie mit der Parametrierung der betriebsartspezifischen Bewegungsgrößen beginnen. Welche der Bewegungsgrößen Sie parametrieren müssen, hängt von Ihrem Antriebsprojekt ab.

5.7.1.1 Geschwindigkeit – Quellen parametrieren

Wenn Sie für Applikationen des Typs Drive Based Center Winder den Sollwert für die Geschwindigkeit aus externen Quellen beziehen, geben Sie diese an wie im Folgenden beschrieben.

Wenn Sie Daten via Feldbus übertragen, kann der Sollwert entweder direkt über einen eigenen Parameter oder indirekt durch das Auslesen eines Parameters bezogen werden (beispielsweise bei PID-Reglern).

Sollgeschwindigkeit - Quelle parametrieren

Wenn Sie den Sollwert für die Geschwindigkeit aus einer externen Quelle beziehen, geben Sie die Quelle für den Hauptsollwert an.

- ✓ Sie verwenden das Bewegungskommando MC_MoveSpeed oder MC_MoveVelocity.
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Externe Geschwindigkeit: Quelle.
- 2. G461 Quelle externe Geschwindigkeit:
 - 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Sie Daten via Feldbus übertragen und den Wert als allgemeine Quelle konfigurieren möchten, wählen Sie 4: Parameter G460.
 - 2.3. Wenn der Sollwert indirekt über einen Parameter ausgelesen wird, wählen Sie5: Indirektes Lesen Parameter G811.
- 3. G460 Externe Geschwindigkeit:

Wenn Sie für G461 = 4: Parameter G460 gewählt haben, geben Sie hier die Sollgeschwindigkeit an.

4. G811 Indirektes Lesen externe Geschwindigkeit:

Wenn Sie für G461 = 5: Indirektes Lesen Parameter G811 gewählt haben, geben Sie hier die zugehörige Parameterkoordinate an.

Zusatzgeschwindigkeit - Quelle parametrieren

Wenn Sie die Sollgeschwindigkeit zusätzlich regulieren möchten, geben Sie die Quelle für den Zusatzsollwert an.

- ✓ Sie verwenden das Bewegungskommando MC_MoveSpeed oder MC_MoveVelocity.
- ✓ Sie beziehen die Sollgeschwindigkeit aus einer externen Quelle.
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Externe Zusatzgeschwindigkeit: Quelle.
- 2. G464 Quelle externe Zusatzgeschwindigkeit:
 - 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Sie Daten via Feldbus übertragen und den Wert als allgemeine Quelle konfigurieren möchten, wählen Sie 4: Parameter G463.
 - 2.3. Wenn der Sollwert indirekt über einen Parameter ausgelesen wird, wählen Sie5: Indirektes Lesen Parameter G812.
- 3. G463 Externe Zusatzgeschwindigkeit:

Wenn Sie für G464 = 4: Parameter G463 gewählt haben, geben Sie hier die Sollgeschwindigkeit an.

G812 Indirektes Lesen externe Zusatzgeschwindigkeit:
 Wenn Sie für G463 = 5: Indirektes Lesen Parameter G812 gewählt haben, geben Sie hier die Parameterkoordinate an.

5.7.1.2 Geschwindigkeits-Override – Quelle parametrieren

Wenn Sie einen Geschwindigkeits-Override nutzen möchten, um das Geschwindigkeitsprofil Ihrer Bewegungskommandos zu skalieren, geben Sie die Quelle für den Geschwindigkeits-Override an.

Wenn Sie Daten via Feldbus übertragen, kann der Sollwert entweder direkt über einen eigenen Parameter oder indirekt durch das Auslesen eines Parameters bezogen werden (beispielsweise bei PID-Reglern).

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Geschwindigkeits-Override: Quelle.
- 2. G467 Quelle Geschwindigkeits-Override:
 - 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Sie Daten via Feldbus übertragen und den Wert als allgemeine Quelle konfigurieren möchten, wählen Sie 4: Parameter G466.
 - 2.3. Wenn der Sollwert indirekt über einen Parameter ausgelesen wird, wählen Sie5: Indirektes Lesen Parameter G813.
- 3. G466 Geschwindigkeits-Override:

Wenn Sie für G467 = 4: Parameter G466 gewählt haben, geben Sie hier die Sollgeschwindigkeit an.

4. G813 Indirektes Lesen Geschwindigkeits-Override:

Wenn Sie für G467 = 5: Indirektes Lesen Parameter G813 gewählt haben, geben Sie hier die Parameterkoordinate an.

5.7.1.3 Drehmoment/Kraft – Quellen parametrieren

Wenn Sie für Applikationen des Typs Drive Based Center Winder das Bewegungskommando MC_TorqueControl gewählt haben und Sollwerte aus externen Quellen beziehen, geben Sie die Quellen für Solldrehmoment/-kraft und die Geschwindigkeitsklammerung an.

Wenn Sie Daten via Feldbus übertragen, kann der Sollwert entweder direkt über einen eigenen Parameter oder indirekt durch das Auslesen eines Parameters bezogen werden (beispielsweise bei PID-Reglern).

Solldrehmoment/-kraft - Quelle parametrieren

Wenn Sie den Sollwert für Drehmoment/Kraft aus einer externen Quelle beziehen, geben Sie die Quelle für Solldrehmoment/-kraft an.

- ✓ Sie verwenden das Bewegungskommando 9: MC_TorqueControl.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Solldrehmoment/-Kraft, Geschwindigkeitsklammerung: Quelle.
- 2. G470 Quelle Soll-Drehmoment/-Kraft:
 - 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Sie Daten via Feldbus übertragen und den Wert als allgemeine Quelle konfigurieren möchten, wählen Sie 4: Parameter G469.
 - 2.3. Wenn der Sollwert indirekt über einen Parameter ausgelesen wird, wählen Sie5: Indirektes Lesen Parameter G814.
- 3. G469 Soll-Drehmoment/-Kraft:

Wenn Sie für G470 = 4: Parameter G469 gewählt haben, definieren Sie hier den Wert für Solldrehmoment/-kraft. Der Wert bezieht sich auf C03 Maximales positives M/F und C05 Maximales negatives M/F.

- 4. G814 Indirektes Lesen Soll-Drehmoment/Kraft:
 - Wenn Sie für G470 = 5: Indirektes Lesen Parameter G814 gewählt haben, definieren Sie hier die zugehörige Parameterkoordinate.
- 5. G500 Drehmoment-/Kraft Aufbau Rampe, G501 Drehmoment-/Kraft Abbau Rampe: Definieren Sie die Rampen für den Aufbau bzw. Abbau von Drehmoment/Kraft.

Geschwindigkeitsklammerung - Quelle parametrieren

Wenn Sie Werte zur Begrenzung der Geschwindigkeit aus einer externen Quelle beziehen, geben Sie die Quelle für die Geschwindigkeitsklammerung an.

- ✓ Sie verwenden das Bewegungskommando 9: MC_TorqueControl.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Solldrehmoment/-Kraft, Geschwindigkeitsklammerung: Quelle.
- 2. G473 Quelle Geschwindigkeitsklammerung positiv:
 - 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn Sie Daten via Feldbus übertragen, wählen Sie 4: Parameter G472.
- 3. G472 Geschwindigkeitsklammerung positiv:

Wenn Sie für G473 = 4: Parameter G472 gewählt haben, definieren Sie die Begrenzung, die Sie maximal für Ihre Mechanik zulassen möchten.

- 4. G476 Quelle Geschwindigkeitsklammerung negativ:
 - 4.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 4.2. Wenn Sie Daten via Feldbus übertragen, wählen Sie 4: Parameter G475.
- 5. G475 Geschwindigkeitsklammerung negativ:

Wenn Sie für G476 = 4: Parameter G475 gewählt haben, definieren Sie hier die Begrenzung, die Sie maximal für Ihre Mechanik zulassen möchten.

Information

Wenn Sie die Geschwindigkeitsklammerung über G472 bzw. G475 festlegen, sollten Sie der Regelung ausreichend Spielraum lassen. Wählen Sie deshalb einen Wert für die Geschwindigkeitsklammerung, der größer als 1 % ist. Werte kleiner als 1 % werden intern auf 1 % und Werte größer als 100 % werden intern auf 100 % gesetzt. G472 und G475 beziehen sich auf I10 Maximale Geschwindigkeit.

STÖBER

5.7.1.4 Analoge Eingänge parametrieren

Wenn in Ihrem Antriebsprojekt die analogen Eingänge als Quelle für die Applikation dienen, parametrieren Sie den jeweiligen analogen Eingang wie nachfolgend beschrieben.

Weitere Informationen und Signalflusspläne für die analogen Eingänge AI1 – AI3 finden Sie unter Analoge Eingänge [▶91].

Information

In der Applikation Drive Based Center Winder können Sie bei Verwendung des Bewegungskommandos 30: MC_Winder den Wickeldurchmesser, die Material-Istgeschwindigkeit und die Material-Sollgeschwindigkeit sowie die Material-Sollzugkraft über die analogen Eingänge des Antriebsreglers vorgeben. Die skalierten Werte der analogen Eingänge Al1, Al2 und Al3 werden Ihnen in Parameter G270, G271 und G272 auf dem jeweiligen Assistenten angezeigt.

Wenn ein analoger Eingang als Quelle für den **Wickeldurchmesser** dient, entsprechen 0 % am analogen Eingang 0 mm und 100 % entsprechen dem maximal zulässigen Wickeldurchmesser (Parameter: L04).

Wenn ein analoger Eingang als Quelle für die **Materialgeschwindigkeit** dient, entsprechen 0 % am analogen Eingang 0 mm/s und 100 % entsprechen der maximal zulässigen Materialgeschwindigkeit (Parameter: L410). Für die Material-Sollgeschwindigkeit sind auch negative Werte am analogen Eingang möglich, –100 % entsprechen dem negativen Wert der maximal zulässigen Materialgeschwindigkeit.

Wenn ein analoger Eingang als Quelle für die **Material-Sollzugkraft** dient, entsprechen 0 % am analogen Eingang 0 N und 100 % entsprechen der Skalierung für die Material-Sollzugkraft (Parameter: L497).

5 | Inbetriebnahme

5.7.1.4.1 Analogen Eingang AI1 parametrieren

Parametrieren Sie den analogen Eingang als Spannungsquelle, indem Sie eine Zeitkonstante für den zugehörigen Filter definieren und indem Sie die Kalibrierung anhand der maximalen positiven, der maximalen negativen sowie der 0-V-Spannung vornehmen. Abschließend können Sie den analogen Eingang nach Bedarf skalieren.

Wenn der analoge Eingang als Stromquelle dient, nehmen Sie die Kalibrierung stattdessen anhand des maximalen sowie des minimalen Stroms vor und aktivieren Sie optional die Drahtbruchüberwachung.

Analogen Eingang Al1 parametrieren

- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 1.
- 2. F13 Al1 Tiefpass:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

3. F15 Al1 Drahtbruchüberwachung:

Wenn Sie den analogen Eingang Al1 als Stromquelle nutzen und die Drahtbruchüberwachung aktivieren möchten, wählen Sie 1: Aktiv.

4. F116 Al1 Betriebsart:

Wählen Sie die Betriebsart des analogen Eingangs Al1.

- 4.1. Wenn der analoge Eingang Al1 als Spannungsquelle dient, wählen Sie 0: -10V bis 10V.
- 4.2. Wenn der analoge Eingang Al1 als Stromquelle dient, wählen Sie 1: 0 bis 20mA oder 2: 4 bis 20mA.

Analogen Eingang AI1 kalibrieren (Spannungsquelle)

- ✓ Der analoge Eingang Al1 wird als Spannungsquelle interpretiert (F116 = 0: -10V bis 10V).
- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 1 > Analoger Eingang 1: Kalibrierung.
- 2. Stellen Sie die Spannungsquelle auf die minimale Spannung ein.
 - 2.1. F112 Al1 maximaler negativer Wert:

Übernehmen Sie für Parameter F112 den Wert aus Parameter E110[1].

2.2. F114 Al1 maximaler negativer %-Wert:

Definieren Sie in Parameter F114 den zugehörigen Wert für F112 in %.

- 3. Stellen Sie die Spannungsquelle auf die maximale Spannung ein.
 - 3.1. F111 Al1 maximaler positiver Wert:

Übernehmen Sie für Parameter F111 den Wert aus Parameter E110[1].

3.2. F115 Al1 maximaler positiver %-Wert:

Definieren Sie in Parameter F115 den zugehörigen Wert für F111 in %.

- 4. Stellen Sie die Spannungsquelle auf die 0-V-Spannung ein.
 - 4.1. F110 Al1 Nullpunkt:

Übernehmen Sie für Parameter F110 den Wert aus Parameter E110[1].

5. F113 Al1 Totband:

Definieren Sie optional ein Totband, um ein eventuell vorhandenes Rauschen der 0-V-Spannung am analogen Eingang zu kompensieren.

02/2025 | ID 443345.03

5 | Inbetriebnahme STÖBER

Analogen Eingang AI1 kalibrieren (Stromquelle)

- ✓ Der analoge Eingang Al1 wird als Stromquelle interpretiert (F116 = 1:0 bis 20mA oder 2: 4 bis 20mA).
- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 1 > Analoger Eingang 1: Kalibrierung.
- 2. Stellen Sie die Stromquelle auf den minimalen Strom ein.
 - 2.1. F110 Al1 Nullpunkt:

Übernehmen Sie für Parameter F110 den Wert aus Parameter E110[1].

2.2. F114 Al1 maximaler negativer %-Wert:

Definieren Sie in Parameter F114 den zugehörigen Wert für F110 in %.

- 3. Stellen Sie die Stromquelle auf den maximalen Strom ein.
 - 3.1. F111 Al1 maximaler positiver Wert:

Übernehmen Sie für Parameter F111 den Wert aus Parameter E110[1].

3.2. F115 Al1 maximaler positiver %-Wert:

Definieren Sie in Parameter F115 den zugehörigen Wert für F111 in %.

Analogen Eingang Al1 skalieren

- Wählen Sie Assistent Applikation Drive Based Center Winder > Analog Eingänge: Skalierung >
 Analoger Eingang 1: Skalierung.
- 2. G260 Al1 Skalierung:

Wählen Sie die Skalierung für den analogen Eingang.

- 2.1. Wenn Sie den Wert unskaliert verwenden wollen, wählen Sie 0: Ohne Skalierung.
- 2.2. Wenn Sie den Wert vorzeichenlos verwenden wollen, wählen Sie 1: Betrag.
- 2.3. Wenn Sie den Wert invertiert verwenden wollen, wählen Sie 2: Invertierung.
- 2.4. Wenn Sie den Wert mithilfe einer Kennlinie skalieren wollen, wählen Sie 3: X/Y Kennlinie.
- ⇒ Parameter G261 und G262 für die Skalierung des analogen Eingangs mithilfe einer Kennlinie werden eingeblendet.
- 3. G261 Al1 Skalierung X-Wert, G262 Al1 Skalierung Y-Wert:

Wenn Sie für G260 = 3: X/Y Kennlinie gewählt haben, definieren Sie die Wertepaare aus kalibriertem Wert und skaliertem Wert für die Skalierung des analogen Eingangs.

- ⇒ Die Skalierung des analogen Eingangs ist abgeschlossen.
- ⇒ Der skalierte Wert des analogen Eingangs Al1 wird in G270 angezeigt.

02/2025 | ID 443345 03

5.7.1.4.2 Analogen Eingang AI2 parametrieren

Parametrieren Sie den analogen Eingang als Spannungsquelle, indem Sie eine Zeitkonstante für den zugehörigen Filter definieren und indem Sie die Kalibrierung anhand der maximalen positiven, der maximalen negativen sowie der 0-V-Spannung vornehmen. Abschließend können Sie den analogen Eingang nach Bedarf skalieren.

Analogen Eingang AI2 parametrieren

- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 2.
- 2. F23 AI2 Tiefpass:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

Analogen Eingang AI2 kalibrieren

- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 2 > Analoger Eingang 2: Kalibrierung.
- 2. Stellen Sie die Spannungsquelle auf die minimale Spannung ein.
 - 2.1. F122 Al2 maximaler negativer Wert:

 Übernehmen Sie für Parameter F122 den Wert aus Parameter E111[1].
 - 2.2. F124 AI2 maximaler negativer %-Wert:Definieren Sie in Parameter F124 den zugehörigen Wert für F122 in %.
- 3. Stellen Sie die Spannungsquelle auf die maximale Spannung ein.
 - 3.1. F121 Al2 maximaler positiver Wert:

 Übernehmen Sie für Parameter F121 den Wert aus Parameter E111[1].
 - F125 Al2 maximaler positiver %-Wert:
 Definieren Sie in Parameter F125 den zugehörigen Wert für F121 in %.
- 4. Stellen Sie die Spannungsquelle auf die 0-V-Spannung ein.
 - 4.1. F120 AI2 Nullpunkt:
 Übernehmen Sie für Parameter F120 den Wert aus Parameter E111[1].
- 5. F123 AI2 Totband:

Definieren Sie optional ein Totband, um ein eventuell vorhandenes Rauschen der 0-V-Spannung am analogen Eingang zu kompensieren.

Analogen Eingang AI2 skalieren

- Wählen Sie Assistent Applikation Drive Based Center Winder > Analog Eingänge: Skalierung >
 Analoger Eingang 2: Skalierung.
- 2. G263 AI2 Skalierung:

Wählen Sie die Skalierung für den analogen Eingang.

- 2.1. Wenn Sie den Wert unskaliert verwenden wollen, wählen Sie 0: Ohne Skalierung.
- 2.2. Wenn Sie den Wert vorzeichenlos verwenden wollen, wählen Sie 1: Betrag.
- 2.3. Wenn Sie den Wert invertiert verwenden wollen, wählen Sie 2: Invertierung.
- 2.4. Wenn Sie den Wert mithilfe einer Kennlinie skalieren wollen, wählen Sie 3: X/Y Kennlinie.
- ⇒ Parameter G264 und G265 für die Skalierung des analogen Eingangs mithilfe einer Kennlinie werden eingeblendet.
- 3. G264 AI2 Skalierung X-Wert, G265 AI2 Skalierung Y-Wert:

Wenn Sie für G263 = 3: X/Y Kennlinie gewählt haben, definieren Sie die Wertepaare aus kalibriertem Wert und skaliertem Wert für die Skalierung des analogen Eingangs.

- ⇒ Die Skalierung des analogen Eingangs ist abgeschlossen.
- ⇒ Der skalierte Wert des analogen Eingangs Al2 wird in G271 angezeigt.

02/2025 | ID 443345.03

5.7.1.4.3 Analogen Eingang AI3 parametrieren

Parametrieren Sie den analogen Eingang als Spannungsquelle, indem Sie eine Zeitkonstante für den zugehörigen Filter definieren und indem Sie die Kalibrierung anhand der maximalen positiven, der maximalen negativen sowie der 0-V-Spannung vornehmen. Abschließend können Sie den analogen Eingang nach Bedarf skalieren.

Analogen Eingang AI3 parametrieren

- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 3.
- 2. F33 Al3 Tiefpass:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

Analogen Eingang AI3 kalibrieren

- 1. Wählen Sie Assistent Klemmen > Analoger Eingang 3 > Analoger Eingang 3: Kalibrierung.
- 2. Stellen Sie die Spannungsquelle auf die minimale Spannung ein.
 - 2.1. F132 Al3 maximaler negativer Wert:

 Übernehmen Sie für Parameter F132 den Wert aus Parameter E112[1].
 - 2.2. F134 Al3 maximaler negativer %-Wert:Definieren Sie in Parameter F134 den zugehörigen Wert für F132 in %.
- 3. Stellen Sie die Spannungsquelle auf die maximale Spannung ein.
 - 3.1. F131 Al3 maximaler positiver Wert:

 Übernehmen Sie für Parameter F131 den Wert aus Parameter E112[1].
 - F135 Al3 maximaler positiver %-Wert:
 Definieren Sie in Parameter F135 den zugehörigen Wert für F131 in %.
- 4. Stellen Sie die Spannungsquelle auf die 0-V-Spannung ein.
 - 4.1. F130 AI3 Nullpunkt:
 Übernehmen Sie für Parameter F130 den Wert aus Parameter E112[1].
- 5. F133 AI3 Totband:

Definieren Sie optional ein Totband, um ein eventuell vorhandenes Rauschen der O-V-Spannung am analogen Eingang zu kompensieren.

Analogen Eingang AI3 skalieren

- Wählen Sie Assistent Applikation Drive Based Center Winder > Analog Eingänge: Skalierung >
 Analoger Eingang 3: Skalierung.
- 2. G266 AI3 Skalierung:

Wählen Sie die Skalierung für den analogen Eingang.

- 2.1. Wenn Sie den Wert unskaliert verwenden wollen, wählen Sie 0: Ohne Skalierung.
- 2.2. Wenn Sie den Wert vorzeichenlos verwenden wollen, wählen Sie 1: Betrag.
- 2.3. Wenn Sie den Wert invertiert verwenden wollen, wählen Sie 2: Invertierung.
- 2.4. Wenn Sie den Wert mithilfe einer Kennlinie skalieren wollen, wählen Sie 3: X/Y Kennlinie.
- ⇒ Parameter G267 und G268 für die Skalierung des analogen Eingangs mithilfe einer Kennlinie werden eingeblendet.
- 3. G267 AI3 Skalierung X-Wert, G268 AI3 Skalierung Y-Wert:

Wenn Sie für G266 = 3: X/Y Kennlinie gewählt haben, definieren Sie die Wertepaare aus kalibriertem Wert und skaliertem Wert für die Skalierung des analogen Eingangs.

- ⇒ Die Skalierung des analogen Eingangs ist abgeschlossen.
- ⇒ Der skalierte Wert des analogen Eingangs Al3 wird in G272 angezeigt.

STÖBER 5 | Inbetriebnahme

5.7.2 Betriebsart Zentralwickler parametrieren

Nachfolgende Grafik zeigt die Signalflüsse der Betriebsart Zentralwickler. Die hell dargestellten Elemente sind optional.

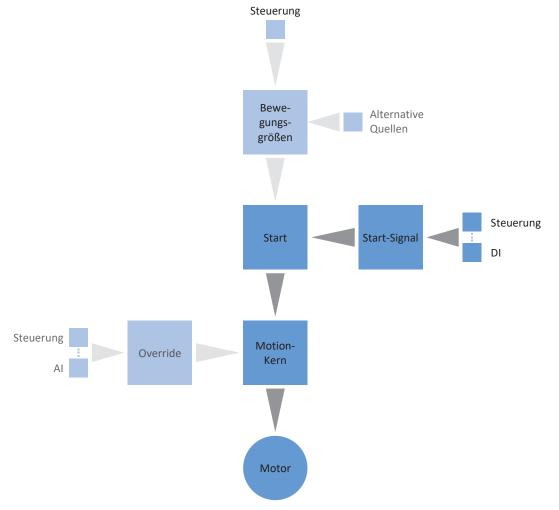


Abb. 3: Betriebsart Zentralwickler: Signalflüsse

In der Betriebsart Zentralwickler wird das Bewegungskommando 30: MC_Winder mit zugehörigen Sollwerten fest auf dem Antriebsregler hinterlegt. Auf diese Weise können Sie mit Sollwerten für die Materialgeschwindigkeit und die Materialzugkraft verschiedene Wickelanwendungen bedienen, z. B. zum Aufwickeln, Abwickeln oder Umwickeln von Materialien wie Kunststoff, Draht, Textilien oder Papier.

In der Betriebsart Zentralwickler werden Antriebsregler entweder über einen Feldbus oder über einen Mischbetrieb aus Feldbus und Klemmen angesteuert.

So gehen Sie vor ...

- Aktivieren Sie die Betriebsart Zentralwickler.
- Wählen Sie Ihrem Anwendungsfall entsprechend die gewünschte Wickelmethode.
- Parametrieren Sie die Quelle des Wickeldurchmessers (Rechner oder Sensor).
- Kompensieren Sie die Reibung und optional die Massenträgheit der Achse.
- Parametrieren Sie entsprechend der Wickelmethode die nötigen Bewegungsgrößen (Materialzugkraft, Materialgeschwindigkeit, Tänzerposition).
- Parametrieren Sie entsprechend der Wickelmethode ggfs. den PID-Regler.
- Parametrieren Sie optional die Materiallänge oder die Materialriss-Überwachung.

Nähere Informationen zu den Wickelmethoden der Applikation Drive Based Center Winder finden Sie unter Wickelmethoden [\triangleright 104].

Information

Welche der für diese Betriebsart zur Verfügung stehenden Bewegungsgrößen Sie in der Software konfigurieren, hängt von Ihrem Anwendungsfall und weiteren projektspezifischen Faktoren wie beispielsweise dem Einsatz einer Steuerung oder der Art der Datenübertragung (Feldbus, Klemmen) ab.

5.7.2.1 Betriebsart Zentralwickler aktivieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder.
- 3. Bereich Betriebsarten:
 - Aktivieren Sie die Option Betriebsart Zentralwickler.
- ⇒ Die zugehörigen Assistenten stehen Ihnen zur Parametrierung der Betriebsart zur Verfügung.
- ⇒ Das Bewegungskommando 30: MC Winder wird im Hintergrund ausgewählt.

5.7.2.2 Wickelmethode wählen

Wählen Sie für den Zentralwickler Ihrem Anwendungsfall entsprechend die gewünschte Wickelmethode. Je nach Wickelmethode ist die Parametrierung unterschiedlicher Bewegungsgrößen und ggfs. des PID-Reglers erforderlich.

Nähere Informationen zu den Wickelmethoden der Applikation Drive Based Center Winder finden Sie unter Wickelmethoden [▶ 104].

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler.
- 2. L00 Zentralwickler Methode:

Wählen Sie die gewünschte Wickelmethode für den Zentralwickler.

- 2.1. Wenn die Materialgeschwindigkeit im Fokus der Applikation steht, wählen Sie 0: Geschwindigkeitssteuerung oder 5: Geschwindigkeitsregelung.
- 2.2. Wenn die Materialzugkraft im Fokus der Applikation steht, wählen Sie 1: Zugkraftsteuerung,2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur.
- 2.3. Wenn Sie mit einem Tänzer arbeiten, wählen Sie 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur.
- 3. L10 Quelle Zentralwickler-Polarität:

Wählen Sie die Interpretationsrichtung zwischen der Wickelrichtung und der Motorbewegung, d. h. die Relation zwischen den Vorzeichen der Material-Sollgeschwindigkeit L420 und der Sollgeschwindigkeit des Motors L102.

- 3.1. Wenn die Vorzeichen der Sollgeschwindigkeiten gleich sind, wählen Sie 0: Positiv.
- 3.2. Wenn die Vorzeichen der Sollgeschwindigkeiten invertiert sind, wählen Sie 1: Negativ.
- 3.3. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 3.4. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

Nähere Informationen zur Wickelrichtung finden Sie unter <u>Wickelrichtung</u> [▶ 113].

02/2025 | ID 443345.03

5.7.2.3 Durchmesser-Quelle parametrieren

Parametrieren Sie die Quelle des Wickeldurchmessers abhängig davon, ob in Ihrem Antriebsprojekt ein Sensor als Quelle für den Durchmesser dient oder ob der Durchmesser durch den Antriebsregler berechnet wird. Für die Berechnung des Wickeldurchmessers durch den Antriebsregler ist ein Sensor für die Material-Istgeschwindigkeit erforderlich. Nehmen Sie zunächst wie nachfolgend beschrieben die allgemeinen Einstellungen vor und parametrieren Sie anschließend je nach Quelle entweder den Durchmesser-Sensor oder den Durchmesser-Rechner.

Nähere Informationen zum Wickeldurchmesser finden Sie unter Wickeldurchmesser [* 111].

Durchmesser parametrieren

Parametrieren Sie den minimal sowie maximal zulässigen Wickeldurchmesser und definieren Sie optional die Zeitkonstante für den Filter des Wickeldurchmessers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser.
- L03 Durchmesser minimal:
 Definieren Sie den minimal zulässigen Durchmesser des Wickels (entspricht üblicherweise der Wickelhülse).
- L04 Durchmesser maximal:
 Definieren Sie den maximal zulässigen Durchmesser des Wickels entsprechend Ihres Anwendungsfalls.
- L111 Durchmesser Zeitkonstante:
 Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

Durchmesser-Quelle parametrieren

Wählen Sie als Quelle für den Wickeldurchmesser entweder einen Sensor oder den Durchmesser-Rechner.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- 2. L20 Quelle Durchmesser:

Wählen Sie die Quelle für den Wickeldurchmesser.

- 2.1. Wenn der Antriebsregler den Wickeldurchmesser berechnen soll, wählen Sie 0: Durchmesser-Rechner.
- 2.2. Wenn ein Sensor als Quelle für den Wickeldurchmesser dient, wählen Sie 1: Durchmesser-Sensor.
- Die Parameter und Assistenten für die Parametrierung des Wickeldurchmessers werden entsprechend der gewählten Quelle eingeblendet.

5 | Inbetriebnahme STÖBER

Durchmesseränderungsbegrenzung parametrieren

Begrenzen Sie optional die Änderung des Wickeldurchmessers hinsichtlich der Wickelrichtung, der maximal zulässigen Änderung pro Sekunde sowie ggfs. der Änderung in Abhängigkeit der Freigabe der Achse.

- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser >
 Begrenzung: Durchmesseränderung.
- 2. L35 Quelle Durchmesseränderungsbegrenzung:

Definieren Sie, ob der Wickeldurchmesser anhand der Wickelrichtung begrenzt wird.

- 2.1. Wenn der Wickeldurchmesser sich in beide Richtungen ändern darf, wählen Sie 0: Inaktiv.
- 2.2. Wenn der Wickeldurchmesser sich nur in Wickelrichtung ändern darf, wählen Sie 1: Aktiv.
- 2.3. Wenn das Steuerwort des Zentralwicklers als Quelle für die Begrenzung der Durchmesseränderung dient, wählen Sie 3: Parameter L150.
- 2.4. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. L36 Durchmesseränderung maximal:

Definieren Sie optional die maximal zulässige Änderung des Wickeldurchmessers pro Sekunde.

4. L37 Durchmesseränderungsbegrenzung freigabe-abhängig:

Wählen Sie, ob die Durchmesseränderungsbegrenzung bei Freigabe-Aus pausieren soll (z. B. für den Austausch der Wickelhülse).

- 4.1. Um die Durchmesseränderung freigabe-unabhängig zu begrenzen, wählen Sie 0: Inaktiv.
- 4.2. Um die Durchmesseränderung freigabe-abhängig zu begrenzen, wählen Sie 1: Aktiv.

Nähere Informationen zur Wickelrichtung finden Sie unter Wickelrichtung [113].

5.7.2.3.1 Durchmesser-Sensor parametrieren

Wenn ein Sensor als Quelle für den Wickeldurchmesser dient, parametrieren Sie Ihrem Anwendungsfall entsprechend einen analogen Eingang oder Feldbus als Quelle.

- ✓ Der Wickeldurchmesser wird über einen Sensor gemessen (L20 = 1: Durchmesser-Sensor).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- 2. L21 Quelle Durchmesser-Sensor:

Wählen Sie die Quelle für den Durchmesser-Sensor.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L25.

_									
	n	+,	1	rr	n	2	ti	O	n

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [> 40] beschrieben.

STÖBER 5 | Inbetriebnahme

5.7.2.3.2 Durchmesser-Rechner parametrieren

Wenn der Wickeldurchmesser durch den Antriebsregler berechnet wird, parametrieren Sie den Durchmesser-Rechner wie nachfolgend beschrieben.

Information

Der Wickeldurchmesser wird für die gleichmäßige Berechnung der Materialzugkraft benötigt und bei L20 = 0: Durchmesser-Rechner vom Antriebsregler unter anderem aus der Istgeschwindigkeit des Motors sowie der Material-Istgeschwindigkeit berechnet. Demnach kann während des Stillstands der Achse der Wickeldurchmesser nicht berechnet werden, sodass sich abhängig vom tatsächlichen Wickeldurchmesser beim Fortsetzen des Bewegungskommandos 30: MC_Winder eine temporär zu geringe Materialzugkraft ergeben kann.

Um bei Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßige Materialzugkraft zu ermöglichen, haben Sie 2 Möglichkeiten: Sie können entweder den berechneten Wickeldurchmesser während des Stillstands der Achse halten oder bei Fortsetzen des Bewegungskommandos 30: MC_Winder temporär einen Startdurchmesser via Feldbus vorgeben (Durchmesser halten: L28; Startdurchmesser: L30).

Durchmesser-Rechner parametrieren

Parametrieren Sie die minimal zulässige Geschwindigkeit für die Berechnung des Wickeldurchmessers.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- L02 Geschwindigkeit minimal:
 Wählen Sie die minimal zulässige Geschwindigkeit, die für die Berechnung des Wickeldurchmessers verwendet werden soll.

Durchmesser-Rechner: Filter parametrieren

Wenn die Qualität der Signale es erfordert, definieren Sie optional die geschwindigkeitsabhängige Zeitkonstante für den Filter des Durchmesser-Rechners.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser > Durchmesser > Durchmesser Rechner: Filter.
- L80 Durchmesser-Rechner Filter Zeitkonstante, L81 Durchmesser-Rechner Filter Geschwindigkeit:
 Um die Material-Istgeschwindigkeit sowie die Istgeschwindigkeit der Achse zu filtern, definieren Sie die geschwindigkeitsabhängigen Zeitkonstanten für den Durchmesser-Rechner.
 - 2.1. L80 Durchmesser-Rechner Filter Zeitkonstante:
 Wenn die Qualität der Signale es erfordert, definieren Sie in L80[0] [7] die Zeitkonstanten für die jeweilige Geschwindigkeit in L81[0] [7].
 - 2.2. L81 Durchmesser-Rechner Filter Geschwindigkeit: Wenn die Qualität der Signale es erfordert, definieren Sie in L81[0] – [7] die Geschwindigkeiten für die jeweilige Zeitkonstante in L80[0] – [7].
- Die geschwindigkeitsabhängige Zeitkonstante für die Berechnung des Wickeldurchmessers wird aus den Wertepaaren für L80 und L81 berechnet (Anzeige: L82).

5 | Inbetriebnahme STÖBER

Startdurchmesser parametrieren

Parametrieren Sie optional einen Startdurchmesser, um beim Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßigere Materialzugkraft zu ermöglichen.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L30 Quelle Startdurchmesser aktivieren:

Wählen Sie die Quelle zum Aktivieren des Startdurchmessers.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser.
- 4. L31 Startdurchmesser:

Definieren Sie den gewünschten Startdurchmesser.

Durchmesser halten: Quelle parametrieren

Parametrieren Sie optional eine Quelle zum Halten des Durchmessers, um beim Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßigere Materialzugkraft zu ermöglichen.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L28 Quelle Durchmesser halten:

Wenn das Steuerwort des Zentralwicklers L150 als Quelle zum Halten des Wickeldurchmessers dient, wählen Sie 2: Parameter L150.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

5.7.2.4 Reibung und Massenträgheit kompensieren

Die Kompensation der Reibung ist grundsätzlich für die korrekte Anzeige der berechneten Material-Istzugkraft erforderlich. Bei L00 = 1: Zugkraftsteuerung müssen zwingend das statische und das dynamische Reibmoment der Achse ermittelt und kompensiert werden, um ein gleichmäßiges Wickelergebnis zu ermöglichen. Bei L00 = 2: Zugkraftregelung, Drehmomentkorrektur kann die Kompensation der Reibung den PID-Regler entlasten.

Optional können auch das konstante und das variable Massenträgheitsmoment der Achse ermittelt und kompensiert werden, um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten. Parametrieren Sie die Kompensation der Massenträgheit wie nachfolgend beschrieben.

Parametrieren Sie bei L00 = 1: Zugkraftsteuerung die Kompensation der Reibung wie nachfolgend beschrieben. Bei allen anderen Wickelmethoden ist die Kompensation von Reibung und Massenträgheit optional und lediglich für die korrekte Anzeige der berechneten Material-Istzugkraft erforderlich (Anzeige: L481).

Weitere Informationen zur Kompensation von Reibung und Massenträgheit finden Sie unter Kompensation von Reibung und Massenträgheit [* 115].

5.7.2.4.1 Reibmomente ermitteln

Ermitteln Sie das statische und das dynamische Reibmoment mithilfe der Steuertafel Tippen und anhand der jeweiligen Formel wie nachfolgend beschrieben.

⚠ WARNUNG!

Personen- und Sachschaden durch Achsbewegung!

Mit Aktivieren der Steuertafel haben Sie mittels der DriveControlSuite die alleinige Kontrolle über die Bewegungen der Achse. Wenn Sie eine Steuerung verwenden, werden mit Aktivieren der Steuertafel die Achsbewegungen nicht mehr von dieser überwacht. Die Steuerung kann nicht eingreifen, um Kollisionen zu verhindern. Mit Deaktivieren der Steuertafel übernimmt die Steuerung wieder die Kontrolle und es kann zu unerwarteten Achsbewegungen kommen.

- Wechseln Sie bei aktiver Steuertafel nicht in andere Fenster.
- Nutzen Sie die Steuertafel nur, wenn Sie Blickkontakt zur Achse haben.
- Stellen Sie sicher, dass sich keine Personen oder Gegenstände im Verfahrbereich befinden.
- Bei Zugriff über Fernwartung muss eine Kommunikationsverbindung zwischen Ihnen und einer Person vor Ort mit Blickkontakt zur Achse bestehen.

5 | Inbetriebnahme STÖBER

Steuertafel Tippen: Betriebspunkte ermitteln

Um das statische und dynamische Reibmoment zu ermitteln, verfahren Sie den Zentralwickler ohne Material mithilfe der Steuertafel Tippen mit 2 unterschiedlichen Geschwindigkeiten und notieren Sie sich für die 2 Betriebspunkte das Wertepaar aus Geschwindigkeit und zugehörigem Drehmoment.

- ✓ Es besteht eine Online-Verbindung zwischen DriveControlSuite und Antriebsregler.
- ✓ Die Wickelhülse ist leer, es wird kein Material aufgewickelt.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Steuertafel Tippen.
- 3. Klicken Sie auf Steuertafel Ein und anschließend auf Freigabe.
 - ⇒ Die Achse wird über die aktive Steuertafel kontrolliert.
- 4. Prüfen Sie die Default-Werte der Steuertafel und passen Sie diese gegebenenfalls auf Ihr projektiertes Achsmodell an.
- 5. I12 Tip-Geschwindigkeit:
 - Definieren Sie die niedrigere Geschwindigkeit und verfahren Sie die Achse entsprechend der Wickelrichtung mit Tip+ oder Tip-.
- I88 Istgeschwindigkeit, E02 Istmoment/-kraft gefiltert:
 Notieren Sie sich den absoluten Wert (Betrag) der Istgeschwindigkeit sowie des zugehörigen Drehmoments als Betriebspunkt 1 für die Berechnung der Reibmomente (n_{2.1}, M_{2.1}).
- 7. I12 Tip-Geschwindigkeit:
 - Definieren Sie die höhere Geschwindigkeit und verfahren Sie die Achse entsprechend der Wickelrichtung mit Tip+ oder Tip-.
- I88 Istgeschwindigkeit, E02 Istmoment/-kraft gefiltert:
 Notieren Sie sich den absoluten Wert (Betrag) der Istgeschwindigkeit sowie des zugehörigen Drehmoments als Betriebspunkt 2 für die Berechnung der Reibmomente (n_{2,2}, M_{2,2}).
- ⇒ Sie haben Betriebspunkt 1 (n_{2.1}, M_{2.1}) und Betriebspunkt 2 (n_{2.2}, M_{2.2}) für die Berechnung der Reibmomente ermittelt.

Statisches und dynamisches Reibmoment ermitteln

Für die Berechnung des statischen Reibmoments M_{Rstat} und des dynamischen Reibmoments M_{Rdyn} benötigen Sie die folgenden absoluten Werte (Beträge):

- Betriebspunkt 1 (niedrigere Geschwindigkeit)
 - M_{2.1}: Drehmoment am Getriebeabtrieb
 - n_{2,1}: Drehzahl am Getriebeabtrieb
- Betriebspunkt 2 (höhere Geschwindigkeit)
 - M_{2.2}: Drehmoment am Getriebeabtrieb
 - n_{2,2}: Drehzahl am Getriebeabtrieb

Verwenden Sie die nachfolgende Formel für die gemessenen Wertepaare, um das dynamische Reibmoment M_{Rdyn} zu ermitteln und notieren Sie sich das Ergebnis (Zielparameter: L120).

$$M_{Rdyn} = \frac{M_{2,\,2} - M_{2,\,1}}{\frac{n_{2,\,2} - n_{2,\,1}}{1000\ min^{-1}}}$$

Abb. 4: Dynamisches Reibmoment M_{Rdyn}

Verwenden Sie die nachfolgende Formel für die gemessenen Wertepaare, um das statische Reibmoment M_{Rstat} zu ermitteln und notieren Sie sich das Ergebnis (Zielparameter: L110).

$$M_{\text{Rstat}} = M_{2,\,2} - \left(M_{\text{Rdyn}} \times \left(\frac{n_{2,\,2}}{1000 \text{ min}^{-1}}\right)\right) = M_{2,\,1} - \left(M_{\text{Rdyn}} \times \left(\frac{n_{2,\,1}}{1000 \text{ min}^{-1}}\right)\right)$$

Abb. 5: Statisches Reibmoment M_{Rstat}

Beispiel

- Betriebspunkt 1 (niedrigere Geschwindigkeit)
 - M_{2.1} = 12 %
 - $n_{2,1} = 500 \text{ min}^{-1}$
- Betriebspunkt 2 (höhere Geschwindigkeit)
 - M_{2,2} = 39 %
 - $n_{2.2} = 3000 \text{ min}^{-1}$

$$M_{Rdyn} = \frac{39 \% - 12 \%}{\frac{3000 \text{ min}^{-1} - 500 \text{ min}^{-1}}{1000 \text{ min}^{-1}}} = 10.8 \%$$

Abb. 6: Beispiel: M_{Rdyn} berechnen

$$M_{\text{Rstat}} = 39 \ \% - \left(10,8 \ \% \times \left(\frac{3000 \ \text{min}^{-1}}{1000 \ \text{min}^{-1}}\right)\right) = 39 \ \% - 32,4 \ \% = 6,6 \ \%$$

Abb. 7: Beispiel: M_{Rstat} berechnen

5.7.2.4.2 Reibung kompensieren

Kompensieren Sie die statische und die dynamische Reibung der Achse, indem Sie die zuvor ermittelten Reibmomente in die Zielparameter eintragen.

- ✓ Sie haben das statische Reibmoment M_{Rstat} der Achse ermittelt.
- \checkmark Sie haben das dynamische Reibmoment M_{Rdyn} der Achse ermittelt.
- Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Kompensation.
- 3. L110 Reibmoment statisch:

Definieren Sie das Reibmoment für die Kompensation der statischen Reibung der Achse.

4. L120 Reibmoment dynamisch:

Definieren Sie das Reibmoment für die Kompensation der dynamischen Reibung der Achse.

5.7.2.4.3 Massenträgheitsmomente ermitteln

Um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten, kompensieren Sie optional die konstante und die variable Massenträgheit der Achse. Ermitteln Sie dazu die Massenträgheitsmomente der Achse entsprechend der jeweiligen Komponente anhand der nachfolgenden Formeln für Vollzylinder oder Hohlzylinder.

$$J = \frac{1}{2}mr^2$$

Abb. 8: Massenträgheitsmoment J (Vollzylinder)

$$J = m \frac{{{r_1}^2} + {{r_2}^2}}{2}$$

Abb. 9: Massenträgheitsmoment J (Hohlzylinder)

Massenträgheitsmoment des Getriebes ermitteln

Das Massenträgheitsmoment J_1 des Getriebes entnehmen Sie den technischen Daten im zugehörigen Katalog (Zielparameter: L200).

Massenträgheitsmoment der Welle samt Wickelhülse ermitteln

Für die Berechnung des Massenträgheitsmoments J der Welle samt Wickelhülse benötigen Sie die folgenden Werte:

- Massenträgheitsmoment J der Welle
 - r: Radius der Welle
 - m: Gewicht der Welle
- Massenträgheitsmoment J der Wickelhülse
 - r₁: innerer Radius der Wickelhülse
 - r₂: äußerer Radius der Wickelhülse
 - m: Gewicht der Wickelhülse

Berechnen Sie das Massenträgheitsmoment J der Welle samt Wickelhülse folgendermaßen:

- 1. Berechnen Sie das Massenträgheitsmoment J der Welle anhand der Formel für Vollzylinder.
- 2. Berechnen Sie das Massenträgheitsmoment J der Wickelhülse anhand der Formel für Hohlzylinder.
- 3. Addieren Sie die Massenträgheitsmomente J der Welle und der Wickelhülse und notieren Sie sich das Ergebnis (Zielparameter: L220).

Massenträgheitsmoment des Wickels ermitteln

Für die Berechnung des Massenträgheitsmoments J des Wickels ohne Welle und Wickelhülse benötigen Sie die folgenden Werte:

- Massenträgheitsmoment J des Wickels
 - r₁: innerer Radius des Wickels bei minimalem Wickeldurchmesser L03
 - r₂: äußerer Radius des Wickels bei maximalem Wickeldurchmesser L04
 - m: Gewicht des Wickels bei maximalem Wickeldurchmesser L04

Berechnen Sie das Massenträgheitsmoment J des Wickels anhand der Formel für Hohlzylinder und notieren Sie sich das Ergebnis (Zielparameter: L240).

Um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten, kompensieren Sie optional die Massenträgheit der Achse, indem Sie die zuvor ermittelten Massenträgheitsmomente für die entsprechenden Parameter definieren oder deaktivieren Sie die Funktion mithilfe des Overrides.

- ✓ Sie haben das Massenträgheitsmoment J₁ des Getriebes ermittelt.
- ✓ Sie haben das Massenträgheitsmoment J der Welle samt Wickelhülse ermittelt.
- ✓ Sie haben das Massenträgheitsmoment J des Wickels bei maximalem Wickeldurchmesser ermittelt.
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Kompensation.
- 2. L200 Massenträgheitsmoment Getriebe:
 - Definieren Sie das Massenträgheitsmoment J des Getriebes für die Kompensation der Massenträgheit der Achse.
- L220 Massenträgheitsmoment Welle:
 Definieren Sie das Massenträgheitsmoment J der Welle und der Wickelhülse für die Kompensation der Massenträgheit der Achse.
- L240 Massenträgheitsmoment Wickel:
 Definieren Sie das Massenträgheitsmoment J des Materials bei maximalem Wickeldurchmesser für die Kompensation der Massenträgheit der Achse.
- L301 Kompensation Massenträgheitsmoment Override:
 Definieren Sie den Override für die Kompensation des Massenträgheitsmoments der Achse, der Wert 0 deaktiviert die Funktion.

Information

Um abrupten Sollwertsprüngen vorzubeugen, sollte die Kompensation des Massenträgheitsmoments nur aktiviert werden (L301 ≠ 0), wenn die Material-Sollgeschwindigkeit extern verrampt wird, da für die Kompensation des Massenträgheitsmoments die Ableitung der Material-Sollgeschwindigkeit verwendet wird.

02/2025 | ID 443345.03

5.7.2.5 Material-Sollgeschwindigkeit parametrieren

Das Vorzeichen der Material-Sollgeschwindigkeit definiert die Wickelrichtung: Bei positiver Material-Sollgeschwindigkeit wickelt der Zentralwickler auf (zunehmender Wickeldurchmesser), bei negativer Material-Sollgeschwindigkeit ab (abnehmender Wickeldurchmesser).

Nähere Informationen zur Wickelrichtung finden Sie unter Wickelrichtung [113].

Material-Sollgeschwindigkeit parametrieren

Parametrieren Sie die maximal zulässige Materialgeschwindigkeit sowie ggfs. den Override für die Sollgeschwindigkeit des Motors und definieren Sie optional die Zeitkonstante für den Filter der Material-Sollgeschwindigkeit.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollgeschwindigkeit.
- 2. L400 Quelle Material-Sollgeschwindigkeit:

Wählen Sie die Quelle der Material-Sollgeschwindigkeit.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L405.
- 3. L410 Materialgeschwindigkeit maximal:

Definieren Sie die maximal zulässige Materialgeschwindigkeit.

4. L406 Material-Sollgeschwindigkeit Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L07 Quelle Geschwindigkeits-Override:

Wenn Sie LOO = 1: Zugkraftsteuerung oder 2: Zugkraftregelung, Drehmomentkorrektur gewählt haben, wählen Sie die Quelle des Geschwindigkeits-Overrides für die Sollgeschwindigkeit des Motors.

- 5.1. Um den Geschwindigkeits-Override relativ vorzugeben, wählen Sie 1: Relativ.
- 5.2. Um den Geschwindigkeits-Override absolut vorzugeben, wählen Sie 2: Absolut.
- 5.3. Um den Geschwindigkeits-Override relativ und absolut vorzugeben, wählen Sie 3: Relativ + absolut.
- 6. L05 Geschwindigkeits-Override relativ:

Wenn Sie für L07 = 1: Relativ oder 3: Relativ + absolut gewählt haben, definieren Sie den relativen Geschwindigkeits-Override.

7. L06 Geschwindigkeits-Override absolut:

Wenn Sie für L07 = 2: Absolut oder 3: Relativ + absolut gewählt haben, definieren Sie den absoluten Geschwindigkeits-Override.

Information

Der Geschwindigkeits-Override ist bei L00 = 1: Zugkraftsteuerung und L00 = 2: Zugkraftregelung, Drehmomentkorrektur erforderlich, um eine Differenz zwischen Sollgeschwindigkeit und Istgeschwindigkeit des Motors zu schaffen, sodass die erforderliche Material-Istzugkraft für ein gleichmäßiges Wickelergebnis aufgebracht werden kann. Beim Aufwickeln wird die Material-Sollgeschwindigkeit entsprechend des Geschwindigkeits-Overrides erhöht und beim Abwickeln entsprechend verringert.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [\(\bullet \) 40] beschrieben.

Wenn der Wickeldurchmesser durch den Antriebsregler berechnet wird oder wenn Sie L00 = 5: Geschwindigkeitsregelung gewählt haben, parametrieren Sie die Quelle der Material-Istgeschwindigkeit wie nachfolgend beschrieben.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Istgeschwindigkeit.
- 2. L452 Quelle Material-Istgeschwindigkeit:

Wählen Sie die Quelle der Material-Istgeschwindigkeit.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L450.
- 2.3. Wenn die Material-Istgeschwindigkeit der Material-Sollgeschwindigkeit entspricht, wählen Sie5: Parameter L420.
- 2.4. Wenn ein Master-Encoder als Quelle für die Material-Istgeschwindigkeit dient, wählen Sie 6: Parameter G105.
- 3. L410 Materialgeschwindigkeit maximal:

Definieren Sie die maximal zulässige Materialgeschwindigkeit.

4. L456 Material-Istgeschwindigkeit Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L458 Material-Istgeschwindigkeit invertieren:

Wenn Sie für L00 = 5: Geschwindigkeitsregelung gewählt haben, invertieren Sie ggfs. das Vorzeichen der Material-Istgeschwindigkeit, damit die Vorzeichen der Material-Istgeschwindigkeit und der Material-Sollgeschwindigkeit übereinstimmen.

Information

Wenn der Durchmesser-Rechner als Quelle für den Wickeldurchmesser dient, berechnet der Antriebsregler den Wickeldurchmesser aus der absoluten Motor-Istgeschwindigkeit und aus der absoluten Material-Istgeschwindigkeit. Bei LOO = 5: Geschwindigkeitsregelung müssen die Vorzeichen der Material-Istgeschwindigkeit und der Material-Sollgeschwindigkeit übereinstimmen.

Stellen Sie sicher, dass die parametrierte Material-Istgeschwindigkeit der tatsächlichen Geschwindigkeit des Materials direkt am Wickel entspricht, damit der Wickeldurchmesser und folglich das Solldrehmoment der Achse für ein gleichmäßiges Wickelergebnis exakt berechnet werden können. Die Material-Istgeschwindigkeit muss der tatsächlichen Geschwindigkeit des Materials am Wickel entsprechen.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [40] beschrieben.

02/2025 | ID 443345.03

5.7.2.7 Master-Encoder parametrieren

Wenn ein Master-Encoder als Quelle für die Material-Istgeschwindigkeit dient, parametrieren Sie den Master-Encoder wie nachfolgend beschrieben.

Master-Encoder parametrieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Encoder > Master-Encoder: Skalierung.
- 3. G104 Masterencoder:

Wählen Sie die Schnittstelle, über die der Master-Encoder angeschlossen ist.

- G47 Zähler Master-Wegfaktor, G48 Nenner Master-Wegfaktor:
 Definieren Sie den Umrechnungsfaktor für den Weg des Master-Encoders bezogen auf die Master-Position.
- 5. Wählen Sie Assistent Encoder.
- G297 Maximalgeschwindigkeit Masterencoder
 Definieren Sie die maximal zulässige Geschwindigkeit des Master-Encoders.

Information

Parametrieren Sie G297 Maximalgeschwindigkeit Masterencoder Ihrem Anwendungsfall entsprechend: Wenn G297 zu klein gewählt ist, kommt es bereits bei normalen Betriebsgeschwindigkeiten zur Überschreitung der zulässigen Maximalgeschwindigkeit. Wenn G297 zu groß gewählt ist, können Messfehler des Encoders übersehen werden.

G297 ist abhängig von den folgenden Parametern: G46 Dezimalstellen Master, G47 Zähler Master-Wegfaktor, G48 Nenner Master-Wegfaktor und G49 Maßeinheit Master. Wenn Sie Änderungen an einem der genannten Parameter vorgenommen haben, passen Sie auch G297 entsprechend an.

Master-Encoder: Schnittstelle parametrieren

Die verfügbaren Anschlüsse variieren je nach Baureihe und ggfs. Klemmenmodul des Antriebsreglers.

- ✓ Sie haben die Schnittstelle für den Master-Encoder gewählt (G104 ≠ 0: Inaktiv).
- 1. Wenn Sie den Master-Encoder über die X4-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X4.
 - 1.1. H00 X4-Funktion:
 - Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.
 - ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
 - 1.2. H03 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

- 1.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.
- 2. Wenn Sie den Master-Encoder über Schnittstelle X101 oder X103 (DI) angeschlossen haben, wählen Sie Assistent Encoder > X101/X103 (DI).
 - 2.1. H40 DI-Encoder:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 2.2. H43 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

2.3. H41 DI-Zähler, H42 DI-Nenner:

Parametrieren Sie das Wertepaar für die Skalierung des Encoders am digitalen Eingang.

- 3. Wenn Sie den Master-Encoder über die X120-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X120.
 - 3.1. H120 X120-Funktion:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 3.2. H123 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

- 3.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.
- 4. Wenn Sie den Master-Encoder über die X140-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X140.
 - 4.1. H140 X140-Funktion:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 4.2. H143 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

4.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.

5.7.2.8 Material-Sollzugkraft parametrieren

Wenn Sie für L00 = 1: Zugkraftsteuerung, 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie die Material-Sollzugkraft wie nachfolgend beschrieben.

Material-Sollzugkraft parametrieren

Wählen Sie die Quelle sowie den Modus für die Vorgabe der Material-Sollzugkraft und definieren Sie optional die Zeitkonstante für den Filter der Material-Sollzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollzugkraft.
- 2. L498 Quelle Material-Sollzugkraft:

Wählen Sie die Quelle der Material-Sollzugkraft.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L496.
- 3. L497 Material-Sollzugkraft maximal:

Definieren Sie die maximal zulässige Materialzugkraft, die zusätzlich für die Skalierung der Werte am analogen Eingang verwendet wird (0 % = 0 N, 100 % = 1497).

4. L495 Material-Sollzugkraft Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L500 Material-Sollzugkraft Modus:

Wählen Sie den Modus für die Vorgabe der Material-Sollzugkraft.

- 5.1. Wenn die Material-Sollzugkraft unverändert vorgegeben werden soll, wählen Sie0: Direkte Material-Sollzugkraft.
- 5.2. Wenn die Material-Sollzugkraft proportional zum Durchmesser erhöht werden soll, wählen Sie 1: Material-Sollzugkraft proportional zu D.
- 5.3. Wenn das Solldrehmoment des Motors unabhängig vom Durchmesser konstant gehalten werden soll, wählen Sie 2: Konstantes Drehmoment.
- 5.4. Wenn ein durchmesserabhängiger Override auf die Material-Sollzugkraft angewandt werden soll, wählen Sie 3: Kennlinie.
- ⇒ Assistent Material-Sollzugkraft: Kennlinie für die Parametrierung des durchmesserabhängigen Material-Sollzugkraft-Override wird eingeblendet.
- 5.5. Wenn das Steuerwort L150 des Zentralwicklers als Quelle für die Auswahl des Modus dient, wählen Sie 4: Parameter L150.

Into	rmation	
HHU	IIIIauvii	

Aus der vorgegebenen Material-Sollzugkraft und dem Wickeldurchmesser wird das erforderliche Solldrehmoment für die Achse berechnet. Negative Werte für die Material-Sollzugkraft werden auf 0 begrenzt. Stellen Sie für ein gleichmäßiges Wickelergebnis sicher, dass die Material-Sollzugkraft korrekt parametriert ist.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [\(\bullet \) 40] beschrieben.

02/2025 | ID 443345.03

STÖBER 5 | Inbetriebnahme

Material-Sollzugkraft: Kennlinie parametrieren

Wenn Sie die vorgegebene Material-Sollzugkraft durch einen durchmesserabhängigen Override modifizieren wollen, definieren Sie die Wertepaare aus Wickeldurchmesser und Material-Sollzugkraft-Override.

- ✓ Sie wollen die Material-Sollzugkraft mit einem durchmesserabhängigen Override modifizieren (L500 = 3: Kennlinie oder 4: Parameter L150).
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollzugkraft > Material-Sollzugkraft: Kennlinie.
- 2. L600 Material-Sollzugkraft-Kennlinie Durchmesser, L610 Material-Sollzugkraft-Kennlinie Override: Definieren Sie die Wertepaare aus Wickeldurchmesser und Material-Sollzugkraft-Override für den durchmesserabhängigen Material-Sollzugkraft-Override.

5.7.2.9 Material-Istzugkraft parametrieren

Wenn Sie für L00 = 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie die Quelle der Material-Istzugkraft wie nachfolgend beschrieben.

Material-Istzugkraft parametrieren

Wählen Sie die Quelle für die Vorgabe der Material-Istzugkraft und definieren Sie optional die Zeitkonstante für den Filter der Material-Istzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Istzugkraft.
- 2. L492 Quelle Material-Istzugkraft:

Wählen Sie die Quelle der Material-Istzugkraft.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L490.
- 3. L497 Material-Sollzugkraft maximal:

Definieren Sie die maximal zulässige Materialzugkraft, die zusätzlich für die Skalierung der Werte am analogen Eingang verwendet wird (0 % = 0 N, 100 % = 1497).

4. L489 Material-Istzugkraft Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5.7.2.10 Tänzer parametrieren

Wenn Sie für L00 = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie den Tänzer wie nachfolgend beschrieben.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Tänzer.
- 2. L95 Tänzer-Sollposition:

Definieren Sie die Sollposition des Tänzers.

3. L90 Quelle Tänzer-Istposition:

Wählen Sie die Quelle der Tänzer-Istposition.

- 3.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L96.
- 4. L91 Tänzer-Istposition AI unskaliert, L92 Tänzer-Istposition AI skaliert:

Wenn ein analoger Eingang als Quelle dient, definieren Sie den gewünschten Wertebereich am analogen Eingang sowie den gewünschten Wertebereich der Tänzer-Istposition für die Skalierung (Einheit: $\% \rightarrow \text{mm}$).

5. L93 Tänzer-Istposition Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

L97 Tänzer-Sollposition minimal, L98 Tänzer-Sollposition maximal:
 Definieren Sie den zulässigen Wertebereich für die Tänzer-Sollposition.

02/2025 | ID 443345.0

5.7.2.11 PID-Regler parametrieren

Wenn Sie für L00 eine der folgenden Wickelmethoden gewählt haben, parametrieren Sie den PID-Regler wie nachfolgend beschrieben.

- 2: Zugkraftregelung, Drehmomentkorrektur
- 3: Zugkraftregelung, Geschwindigkeitskorrektur
- 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur
- 5: Geschwindigkeitsregelung

Nähere Informationen zum PID-Regler in der Applikation Drive Based Center Winder finden Sie unter PID-Regler [116].

Skalierung parametrieren

Parametrieren Sie abhängig von der gewählten Wickelmethode die Skalierung der Ein- und Ausgänge des PID-Reglers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler.
- 2. L357 Materialzugkraft Skalierung:

Wenn Sie für L00 = 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, definieren Sie die Skalierung der Materialzugkraft für den PID-Regler.

3. L358 Materialgeschwindigkeit Skalierung:

Wenn Sie für L00 = 3: Zugkraftregelung, Geschwindigkeitskorrektur, 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur oder 5: Geschwindigkeitsregelung gewählt haben, definieren Sie die Skalierung der Materialgeschwindigkeit für den PID-Regler.

4. L359 Tänzerposition Skalierung:

Wenn Sie für L00 = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur gewählt haben, definieren Sie die Skalierung der Materialzugkraft für den PID-Regler.

PID-Regler parametrieren

Parametrieren Sie unabhängig von der gewählten Wickelmethode die restlichen Einstellungen des PID-Reglers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > PID-Regler.
- 2. L370 Quelle PID-Regler Freigabe:

Wählen Sie die Quelle für die Freigabe des PID-Reglers.

- 2.1. Um den PID-Regler grundsätzlich freizugeben, wählen Sie 1: High.
- 2.2. Wenn das Steuerwort der Applikation als Quelle dient, wählen Sie 2: Parameter L150.
- 2.3. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. L350 PID-Regler Kreisverstärkung:

Definieren Sie die Kreisverstärkung K_{o} des PID-Reglers.

4. L351 PID-Regler Proportionalbeiwert:

Definieren Sie den Proportionalbeiwert K_P des PID-Reglers.

5. L352 PID-Regler Integrierbeiwert:

Definieren Sie den Integrierbeiwert K, des PID-Reglers.

6. L353 PID-Regler Differenzierzeit:

Definieren Sie die Differenzierzeit T_D des PID-Reglers.

7. L354 Tiefpass Differentiation PID:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

L355 Negativer Maximalwert PID, L356 Positiver Maximalwert PID:
 Definieren Sie die maximal zulässige positive und sowie die maximal zulässige negative Stellgröße des PID-Reglers.

STÖBER 5 | Inbetriebnahme

5.7.2.12 Materialriss-Überwachung parametrieren

Wenn Sie die Materialriss-Überwachung nutzen möchten, wählen Sie die gewünschte Quelle und parametrieren Sie optional Applikations-Ereignis 0. Bei L00 = 2: Zugkraftregelung, Drehmomentkorrektur und 3: Zugkraftregelung, Geschwindigkeitskorrektur definieren Sie bei Verwendung des Algorithmus zusätzlich die minimal zulässige Materialzugkraft.

Nähere Informationen zur Materialriss-Überwachung finden Sie unter Materialriss-Überwachung [** 116].

Materialriss-Überwachung parametrieren

Parametrieren Sie die Quelle der Materialriss-Überwachung und definieren Sie bei Verwendung des Algorithmus ggfs. die minimal zulässige Materialzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Materialriss-Überwachung.
- 2. L381 Quelle Materialriss-Überwachung:

Wählen Sie die Quelle für die Materialriss-Überwachung.

- 2.1. Wenn ein Sensor als Quelle dient, wählen Sie 1: Sensor.
- 2.2. Wenn Sie die Materialzugkraft anhand eines Algorithmus überwachen wollen, wählen Sie 2: Algorithmus.
- 2.3. Wenn ein Sensor als Quelle dient und Sie zusätzlich den Algorithmus verwenden wollen, wählen Sie 3: Algorithmus + Sensor.
- 3. L382 Materialzugkraft minimal:

Wenn Sie für L381 = 2: Algorithmus oder 3: Algorithmus + Sensor gewählt haben, definieren Sie ggfs. die minimal zulässige Material-Istzugkraft für die Materialriss-Überwachung (erforderlich für L00 = 2: Zugkraftregelung, Drehmomentkorrektur und 3: Zugkraftregelung, Geschwindigkeitskorrektur).

⇒ Bei Auslösen der Materialriss-Überwachung wird im Statuswort der Applikation das entsprechende Bit gesetzt (Signal: L904; Statuswort: L155, Bit 7).

Materialriss-Sensor parametrieren

Wenn ein Sensor als Quelle für die Materialriss-Überwachung dient, parametrieren Sie für diesen die Quelle (L381 = 1: Sensor oder 3: Algorithmus + Sensor).

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L380 Quelle Materialriss-Sensor:

Wählen Sie die Quelle für den Materialriss-Sensor.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

Applikations-Ereignis 0 parametrieren

Wenn Sie im Kontext der Materialriss-Überwachung Applikations-Ereignis 0 auslösen möchten, parametrieren Sie zusätzlich das gewünschte Level für die Auswertung des Ereignisses.

- 1. Wählen Sie Assistent Schutzfunktionen > Schutzfunktionen: Applikation.
- 2. U100 Level Applikations-Ereignis 0:

Wählen Sie das gewünschte Level der Schutzfunktion für die Materialriss-Überwachung.

- 2.1. Um das Ereignis mit geringer Priorität auszuwerten, wählen Sie 1: Meldung.
- 2.2. Um das Ereignis mit mittlerer Priorität und Störungsreaktion nach Ablauf der Toleranzzeit auszuwerten, wählen Sie 2: Warnung.
- 2.3. Um das Ereignis mit hoher Priorität und unmittelbarer Störungsreaktion auszuwerten, wählen Sie 3: Störung.
- 3. U101 Zeit Applikations-Ereignis 0:

Wenn Sie für U100 = 2: Warnung Warnung gewählt haben, definieren Sie die gewünschte Toleranzzeit, nach deren Ablauf der Antriebsregler in Störung geht.

5.7.2.13 Materiallänge parametrieren

Wenn Sie die Materiallänge auf dem Wickel anhand des Wickeldurchmessers berechnen möchten, parametrieren Sie die Materialdicke und optional einen Vergleichswert für die Materiallänge, um bei Erreichen des Vergleichswerts das entsprechende Bit im Statuswort des Zentralwicklers zu setzen.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Materiallänge.
- 2. L40 Materialdicke:
 - Definieren Sie die Materialdicke für die Berechnung der Materiallänge auf dem Wickel.
- L42 Materiallänge Vergleichswert:
 Definieren Sie den Vergleichswert für die Materiallänge auf dem Wickel.
- ⇒ Die Materiallänge auf dem Wickel wird anhand des aktuellen sowie maximal zulässigen Durchmessers berechnet.
- ⇒ Bei Erreichen des Vergleichswerts für die Materiallänge wird das entsprechende Bit im Statuswort des Zentralwicklers gesetzt (L155, Bit 9).

Information

Beim Aufwickeln gilt der Vergleichswert als erreicht, wenn die Materiallänge den Vergleichswert überschritten hat (L41 > L42). Beim Abwickeln gilt der Vergleichswert als erreicht, wenn die Materiallänge den Vergleichswert unterschritten hat (L41 < L42).

STÖBER 5 | Inbetriebnahme

5.7.3 Betriebsart Kommando parametrieren

Nachfolgende Grafik zeigt die Signalflüsse der Betriebsart Kommando. Die hell dargestellten Elemente sind optional.

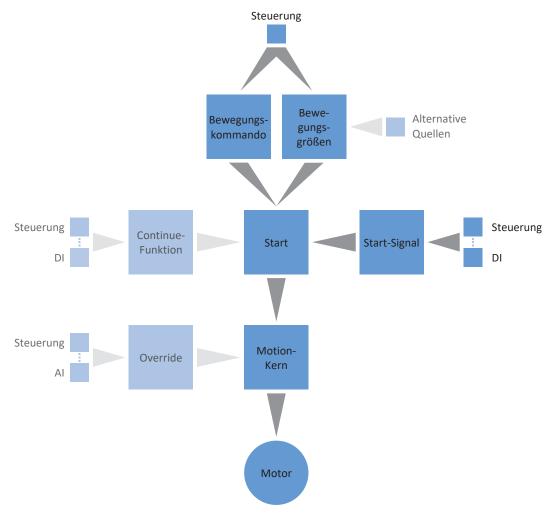


Abb. 10: Betriebsart Kommando: Signalflüsse

In der Betriebsart Kommando werden Bewegungsprofile in Form von Fahraufträgen von einer Steuerung an den Antriebsregler gesendet. Ein Fahrauftrag beinhaltet ein PLCopen-konformes Bewegungskommando, das die grundsätzliche Verfahrweise der Achse bestimmt. Die zugehörigen Bewegungsgrößen liefern Vorgaben zu Geschwindigkeit, Beschleunigung, Verzögerung und Ruck, aus denen der Motion-Kern des Antriebsregler das Bewegungsprofil berechnet.

Die Steuerung koordiniert den zeitlichen Ablauf und selektiert die Fahraufträge für den Antriebsregler, der die Positionier-, Geschwindigkeits- und Drehmoment-/Kraft-Kommandos verarbeitet und ausführt. Die Festlegung der Fahraufträge nehmen Sie in der Steuerung vor, in der DS6 parametrieren Sie die Signalquellen, über welche der Antriebsregler die Fahraufträge von der Steuerung erhält.

In der Betriebsart Kommando werden Antriebsregler entweder über einen Feldbus oder über einen Mischbetrieb aus Feldbus und Klemmen angesteuert. 5 | Inbetriebnahme STÖBER

So gehen Sie vor ...

- Aktivieren Sie die Betriebsart Kommando.
- Parametrieren Sie den Zentralwickler.
 - Parametrieren Sie die Quelle des Wickeldurchmessers (Rechner oder Sensor).
 - Kompensieren Sie die Reibung und optional die Massenträgheit der Achse.
 - Parametrieren Sie entsprechend der Wickelmethode die nötigen Bewegungsgrößen (Materialzugkraft, Materialgeschwindigkeit, Tänzerposition).
 - Parametrieren Sie entsprechend der Wickelmethode ggfs. den PID-Regler.
 - Parametrieren Sie optional die Materiallänge oder die Materialriss-Überwachung.
- Optional: Begrenzen Sie Drehmoment/Kraft über die Betriebsart.
- Parametrieren Sie die kommandospezifischen Bewegungsgrößen.
- Legen Sie die Quelle für das Startsignal fest.
- Optional: Legen Sie die Quelle f
 ür das Continue-Signal fest.

Nähere Informationen zu den Wickelmethoden der Applikation Drive Based Center Winder finden Sie unter Wickelmethoden [▶ 104].

Information

Welche der für diese Betriebsart zur Verfügung stehenden Bewegungsgrößen Sie in der Software konfigurieren, hängt von Ihrem Anwendungsfall und weiteren projektspezifischen Faktoren wie beispielsweise dem Einsatz einer Steuerung oder der Art der Datenübertragung (Feldbus, Klemmen) ab.

5.7.3.1 Betriebsart Kommando aktivieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder.
- Bereich Betriebsarten:
 Aktivieren Sie die Option Betriebsart Kommando.
- ⇒ Die zugehörigen Assistenten werden eingeblendet.

5.7.3.2 Zentralwickler parametrieren

Parametrieren Sie den Zentralwickler wie nachfolgend beschrieben, um das Bewegungskommando 30: MC_Winder zum Wickeln nutzen zu können.

5.7.3.2.1 Wickelmethode wählen

Wählen Sie für den Zentralwickler Ihrem Anwendungsfall entsprechend die gewünschte Wickelmethode. Je nach Wickelmethode ist die Parametrierung unterschiedlicher Bewegungsgrößen und ggfs. des PID-Reglers erforderlich.

Nähere Informationen zu den Wickelmethoden der Applikation Drive Based Center Winder finden Sie unter Wickelmethoden [▶ 104].

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler.
- 2. L00 Zentralwickler Methode:

Wählen Sie die gewünschte Wickelmethode für den Zentralwickler.

- 2.1. Wenn die Materialgeschwindigkeit im Fokus der Applikation steht, wählen Sie 0: Geschwindigkeitssteuerung oder 5: Geschwindigkeitsregelung.
- 2.2. Wenn die Materialzugkraft im Fokus der Applikation steht, wählen Sie 1: Zugkraftsteuerung,2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur.
- 2.3. Wenn Sie mit einem Tänzer arbeiten, wählen Sie 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur.
- 3. L10 Quelle Zentralwickler-Polarität:

Wählen Sie die Interpretationsrichtung zwischen der Wickelrichtung und der Motorbewegung, d. h. die Relation zwischen den Vorzeichen der Material-Sollgeschwindigkeit L420 und der Sollgeschwindigkeit des Motors L102.

- 3.1. Wenn die Vorzeichen der Sollgeschwindigkeiten gleich sind, wählen Sie 0: Positiv.
- 3.2. Wenn die Vorzeichen der Sollgeschwindigkeiten invertiert sind, wählen Sie 1: Negativ.
- 3.3. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 3.4. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

Nähere Informationen zur Wickelrichtung finden Sie unter Wickelrichtung [113].

5 | Inbetriebnahme STÖBER

5.7.3.2.2 Durchmesser-Quelle parametrieren

Parametrieren Sie die Quelle des Wickeldurchmessers abhängig davon, ob in Ihrem Antriebsprojekt ein Sensor als Quelle für den Durchmesser dient oder ob der Durchmesser durch den Antriebsregler berechnet wird. Für die Berechnung des Wickeldurchmessers durch den Antriebsregler ist ein Sensor für die Material-Istgeschwindigkeit erforderlich. Nehmen Sie zunächst wie nachfolgend beschrieben die allgemeinen Einstellungen vor und parametrieren Sie anschließend je nach Quelle entweder den Durchmesser-Sensor oder den Durchmesser-Rechner.

Nähere Informationen zum Wickeldurchmesser finden Sie unter Wickeldurchmesser [11].

Durchmesser parametrieren

Parametrieren Sie den minimal sowie maximal zulässigen Wickeldurchmesser und definieren Sie optional die Zeitkonstante für den Filter des Wickeldurchmessers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser.
- L03 Durchmesser minimal:
 Definieren Sie den minimal zulässigen Durchmesser des Wickels (entspricht üblicherweise der Wickelhülse).
- Definieren Sie den maximal zulässigen Durchmesser des Wickels entsprechend Ihres Anwendungsfalls.
- L111 Durchmesser Zeitkonstante:
 Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

Durchmesser-Quelle parametrieren

Wählen Sie als Quelle für den Wickeldurchmesser entweder einen Sensor oder den Durchmesser-Rechner.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- 2. L20 Quelle Durchmesser:

Wählen Sie die Quelle für den Wickeldurchmesser.

- 2.1. Wenn der Antriebsregler den Wickeldurchmesser berechnen soll, wählen Sie 0: Durchmesser-Rechner.
- 2.2. Wenn ein Sensor als Quelle für den Wickeldurchmesser dient, wählen Sie 1: Durchmesser-Sensor.
- Die Parameter und Assistenten für die Parametrierung des Wickeldurchmessers werden entsprechend der gewählten Quelle eingeblendet.

Begrenzen Sie optional die Änderung des Wickeldurchmessers hinsichtlich der Wickelrichtung, der maximal zulässigen Änderung pro Sekunde sowie ggfs. der Änderung in Abhängigkeit der Freigabe der Achse.

- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser >
 Begrenzung: Durchmesseränderung.
- 2. L35 Quelle Durchmesseränderungsbegrenzung:

Definieren Sie, ob der Wickeldurchmesser anhand der Wickelrichtung begrenzt wird.

- 2.1. Wenn der Wickeldurchmesser sich in beide Richtungen ändern darf, wählen Sie 0: Inaktiv.
- 2.2. Wenn der Wickeldurchmesser sich nur in Wickelrichtung ändern darf, wählen Sie 1: Aktiv.
- 2.3. Wenn das Steuerwort des Zentralwicklers als Quelle für die Begrenzung der Durchmesseränderung dient, wählen Sie 3: Parameter L150.
- 2.4. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. L36 Durchmesseränderung maximal:

Definieren Sie optional die maximal zulässige Änderung des Wickeldurchmessers pro Sekunde.

4. L37 Durchmesseränderungsbegrenzung freigabe-abhängig:

Wählen Sie, ob die Durchmesseränderungsbegrenzung bei Freigabe-Aus pausieren soll (z. B. für den Austausch der Wickelhülse).

- 4.1. Um die Durchmesseränderung freigabe-unabhängig zu begrenzen, wählen Sie 0: Inaktiv.
- 4.2. Um die Durchmesseränderung freigabe-abhängig zu begrenzen, wählen Sie 1: Aktiv.

Nähere Informationen zur Wickelrichtung finden Sie unter Wickelrichtung [113].

5.7.3.2.2.1 Durchmesser-Sensor parametrieren

Wenn ein Sensor als Quelle für den Wickeldurchmesser dient, parametrieren Sie Ihrem Anwendungsfall entsprechend einen analogen Eingang oder Feldbus als Quelle.

- ✓ Der Wickeldurchmesser wird über einen Sensor gemessen (L20 = 1: Durchmesser-Sensor).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- 2. L21 Quelle Durchmesser-Sensor:

Wählen Sie die Quelle für den Durchmesser-Sensor.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L25.

ı	n	f	O	r	n	n	а	ti	io	n
			v		ш		u		\cdot	

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [\(\bullet \) 40] beschrieben.

Wenn der Wickeldurchmesser durch den Antriebsregler berechnet wird, parametrieren Sie den Durchmesser-Rechner wie nachfolgend beschrieben.

Information

Der Wickeldurchmesser wird für die gleichmäßige Berechnung der Materialzugkraft benötigt und bei L20 = 0: Durchmesser-Rechner vom Antriebsregler unter anderem aus der Istgeschwindigkeit des Motors sowie der Material-Istgeschwindigkeit berechnet. Demnach kann während des Stillstands der Achse der Wickeldurchmesser nicht berechnet werden, sodass sich abhängig vom tatsächlichen Wickeldurchmesser beim Fortsetzen des Bewegungskommandos 30: MC_Winder eine temporär zu geringe Materialzugkraft ergeben kann.

Um bei Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßige Materialzugkraft zu ermöglichen, haben Sie 2 Möglichkeiten: Sie können entweder den berechneten Wickeldurchmesser während des Stillstands der Achse halten oder bei Fortsetzen des Bewegungskommandos 30: MC_Winder temporär einen Startdurchmesser via Feldbus vorgeben (Durchmesser halten: L28; Startdurchmesser: L30).

Durchmesser-Rechner parametrieren

Parametrieren Sie die minimal zulässige Geschwindigkeit für die Berechnung des Wickeldurchmessers.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser: Quelle.
- L02 Geschwindigkeit minimal:
 Wählen Sie die minimal zulässige Geschwindigkeit, die für die Berechnung des Wickeldurchmessers verwendet werden soll.

Durchmesser-Rechner: Filter parametrieren

Wenn die Qualität der Signale es erfordert, definieren Sie optional die geschwindigkeitsabhängige Zeitkonstante für den Filter des Durchmesser-Rechners.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser > Durchmesser > Durchmesser > Durchmesser Rechner: Filter.
- L80 Durchmesser-Rechner Filter Zeitkonstante, L81 Durchmesser-Rechner Filter Geschwindigkeit:
 Um die Material-Istgeschwindigkeit sowie die Istgeschwindigkeit der Achse zu filtern, definieren Sie die geschwindigkeitsabhängigen Zeitkonstanten für den Durchmesser-Rechner.
 - 2.1. L80 Durchmesser-Rechner Filter Zeitkonstante:
 Wenn die Qualität der Signale es erfordert, definieren Sie in L80[0] [7] die Zeitkonstanten für die jeweilige Geschwindigkeit in L81[0] [7].
 - 2.2. L81 Durchmesser-Rechner Filter Geschwindigkeit: Wenn die Qualität der Signale es erfordert, definieren Sie in L81[0] – [7] die Geschwindigkeiten für die jeweilige Zeitkonstante in L80[0] – [7].
- Die geschwindigkeitsabhängige Zeitkonstante für die Berechnung des Wickeldurchmessers wird aus den Wertepaaren für L80 und L81 berechnet (Anzeige: L82).

5 | Inbetriebnahme

Startdurchmesser parametrieren

Parametrieren Sie optional einen Startdurchmesser, um beim Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßigere Materialzugkraft zu ermöglichen.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L30 Quelle Startdurchmesser aktivieren:

Wählen Sie die Quelle zum Aktivieren des Startdurchmessers.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Durchmesser.
- 4. L31 Startdurchmesser:

Definieren Sie den gewünschten Startdurchmesser.

Durchmesser halten: Quelle parametrieren

Parametrieren Sie optional eine Quelle zum Halten des Durchmessers, um beim Fortsetzen des Bewegungskommandos 30: MC_Winder aus dem Stillstand eine gleichmäßigere Materialzugkraft zu ermöglichen.

- ✓ Der Wickeldurchmesser wird durch den Antriebsregler berechnet (L20 = 0: Durchmesser-Rechner).
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L28 Quelle Durchmesser halten:

Wenn das Steuerwort des Zentralwicklers L150 als Quelle zum Halten des Wickeldurchmessers dient, wählen Sie 2: Parameter L150.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

5.7.3.2.3 Reibung und Massenträgheit kompensieren

Die Kompensation der Reibung ist grundsätzlich für die korrekte Anzeige der berechneten Material-Istzugkraft erforderlich. Bei L00 = 1: Zugkraftsteuerung müssen zwingend das statische und das dynamische Reibmoment der Achse ermittelt und kompensiert werden, um ein gleichmäßiges Wickelergebnis zu ermöglichen. Bei L00 = 2: Zugkraftregelung, Drehmomentkorrektur kann die Kompensation der Reibung den PID-Regler entlasten.

Optional können auch das konstante und das variable Massenträgheitsmoment der Achse ermittelt und kompensiert werden, um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten. Parametrieren Sie die Kompensation der Massenträgheit wie nachfolgend beschrieben.

Parametrieren Sie bei LOO = 1: Zugkraftsteuerung die Kompensation der Reibung wie nachfolgend beschrieben. Bei allen anderen Wickelmethoden ist die Kompensation von Reibung und Massenträgheit optional und lediglich für die korrekte Anzeige der berechneten Material-Istzugkraft erforderlich (Anzeige: L481).

Weitere Informationen zur Kompensation von Reibung und Massenträgheit finden Sie unter Kompensation von Reibung und Massenträgheit [115].

5.7.3.2.3.1 Reibmomente ermitteln

Ermitteln Sie das statische und das dynamische Reibmoment mithilfe der Steuertafel Tippen und anhand der jeweiligen Formel wie nachfolgend beschrieben.

⚠ WARNUNG!

Personen- und Sachschaden durch Achsbewegung!

Mit Aktivieren der Steuertafel haben Sie mittels der DriveControlSuite die alleinige Kontrolle über die Bewegungen der Achse. Wenn Sie eine Steuerung verwenden, werden mit Aktivieren der Steuertafel die Achsbewegungen nicht mehr von dieser überwacht. Die Steuerung kann nicht eingreifen, um Kollisionen zu verhindern. Mit Deaktivieren der Steuertafel übernimmt die Steuerung wieder die Kontrolle und es kann zu unerwarteten Achsbewegungen kommen.

- Wechseln Sie bei aktiver Steuertafel nicht in andere Fenster.
- Nutzen Sie die Steuertafel nur, wenn Sie Blickkontakt zur Achse haben.
- Stellen Sie sicher, dass sich keine Personen oder Gegenstände im Verfahrbereich befinden.
- Bei Zugriff über Fernwartung muss eine Kommunikationsverbindung zwischen Ihnen und einer Person vor Ort mit Blickkontakt zur Achse bestehen.

STÖBER 5 | Inbetriebnahme

Steuertafel Tippen: Betriebspunkte ermitteln

Um das statische und dynamische Reibmoment zu ermitteln, verfahren Sie den Zentralwickler ohne Material mithilfe der Steuertafel Tippen mit 2 unterschiedlichen Geschwindigkeiten und notieren Sie sich für die 2 Betriebspunkte das Wertepaar aus Geschwindigkeit und zugehörigem Drehmoment.

- ✓ Es besteht eine Online-Verbindung zwischen DriveControlSuite und Antriebsregler.
- ✓ Die Wickelhülse ist leer, es wird kein Material aufgewickelt.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Steuertafel Tippen.
- 3. Klicken Sie auf Steuertafel Ein und anschließend auf Freigabe.
 - ⇒ Die Achse wird über die aktive Steuertafel kontrolliert.
- 4. Prüfen Sie die Default-Werte der Steuertafel und passen Sie diese gegebenenfalls auf Ihr projektiertes Achsmodell an.
- 5. I12 Tip-Geschwindigkeit:
 - Definieren Sie die niedrigere Geschwindigkeit und verfahren Sie die Achse entsprechend der Wickelrichtung mit Tip+ oder Tip-.
- I88 Istgeschwindigkeit, E02 Istmoment/-kraft gefiltert:
 Notieren Sie sich den absoluten Wert (Betrag) der Istgeschwindigkeit sowie des zugehörigen Drehmoments als Betriebspunkt 1 für die Berechnung der Reibmomente (n_{2,1}, M_{2,1}).
- 7. I12 Tip-Geschwindigkeit:
 - Definieren Sie die höhere Geschwindigkeit und verfahren Sie die Achse entsprechend der Wickelrichtung mit Tip+ oder Tip-.
- I88 Istgeschwindigkeit, E02 Istmoment/-kraft gefiltert:
 Notieren Sie sich den absoluten Wert (Betrag) der Istgeschwindigkeit sowie des zugehörigen Drehmoments als Betriebspunkt 2 für die Berechnung der Reibmomente (n_{2,2}, M_{2,2}).
- ⇒ Sie haben Betriebspunkt 1 (n_{2.1}, M_{2.1}) und Betriebspunkt 2 (n_{2.2}, M_{2.2}) für die Berechnung der Reibmomente ermittelt.

Statisches und dynamisches Reibmoment ermitteln

Für die Berechnung des statischen Reibmoments M_{Rstat} und des dynamischen Reibmoments M_{Rdyn} benötigen Sie die folgenden absoluten Werte (Beträge):

- Betriebspunkt 1 (niedrigere Geschwindigkeit)
 - M_{2.1}: Drehmoment am Getriebeabtrieb
 - n_{2,1}: Drehzahl am Getriebeabtrieb
- Betriebspunkt 2 (höhere Geschwindigkeit)
 - M_{2.2}: Drehmoment am Getriebeabtrieb
 - n_{2,2}: Drehzahl am Getriebeabtrieb

Verwenden Sie die nachfolgende Formel für die gemessenen Wertepaare, um das dynamische Reibmoment M_{Rdyn} zu ermitteln und notieren Sie sich das Ergebnis (Zielparameter: L120).

$$M_{Rdyn} = \frac{M_{2,2} - M_{2,1}}{\frac{n_{2,2} - n_{2,1}}{1000 \text{ min}^{-1}}}$$

Abb. 11: Dynamisches Reibmoment M_{Rdyn}

5 | Inbetriebnahme STÖBER

Verwenden Sie die nachfolgende Formel für die gemessenen Wertepaare, um das statische Reibmoment M_{Rstat} zu ermitteln und notieren Sie sich das Ergebnis (Zielparameter: L110).

$$M_{Rstat} = M_{2,\,2} - \left(M_{Rdyn} \times \left(\frac{n_{2,\,2}}{1000 \; min^{-1}} \right) \right) = M_{2,\,1} - \left(M_{Rdyn} \times \left(\frac{n_{2,\,1}}{1000 \; min^{-1}} \right) \right)$$

Abb. 12: Statisches Reibmoment M_{Rstat}

Beispiel

- Betriebspunkt 1 (niedrigere Geschwindigkeit)
 - M_{2.1} = 12 %
 - $n_{2,1} = 500 \text{ min}^{-1}$
- Betriebspunkt 2 (höhere Geschwindigkeit)
 - M_{2,2} = 39 %
 - $n_{2.2} = 3000 \text{ min}^{-1}$

$$M_{Rdyn} = \frac{39 \% - 12 \%}{\frac{3000 \text{ min}^{-1} - 500 \text{ min}^{-1}}{1000 \text{ min}^{-1}}} = 10.8 \%$$

Abb. 13: Beispiel: M_{Rdyn} berechnen

$$M_{\text{Rstat}} = 39 \ \% - \left(10,8 \ \% \times \left(\frac{3000 \ \text{min}^{-1}}{1000 \ \text{min}^{-1}}\right)\right) = 39 \ \% - 32,4 \ \% = 6,6 \ \%$$

Abb. 14: Beispiel: M_{Rstat} berechnen

5.7.3.2.3.2 Reibung kompensieren

Kompensieren Sie die statische und die dynamische Reibung der Achse, indem Sie die zuvor ermittelten Reibmomente in die Zielparameter eintragen.

- ✓ Sie haben das statische Reibmoment M_{Rstat} der Achse ermittelt.
- $\checkmark~$ Sie haben das dynamische Reibmoment M_{Rdyn} der Achse ermittelt.
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Kompensation.
- L110 Reibmoment statisch:
 Definieren Sie das Reibmoment für die Kompensation der statischen Reibung der Achse.
- L120 Reibmoment dynamisch:
 Definieren Sie das Reibmoment für die Kompensation der dynamischen Reibung der Achse.

02/2025 | ID 443345.03

5.7.3.2.3.3 Massenträgheitsmomente ermitteln

Um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten, kompensieren Sie optional die konstante und die variable Massenträgheit der Achse. Ermitteln Sie dazu die Massenträgheitsmomente der Achse entsprechend der jeweiligen Komponente anhand der nachfolgenden Formeln für Vollzylinder oder Hohlzylinder.

$$J = \frac{1}{2}mr^2$$

Abb. 15: Massenträgheitsmoment J (Vollzylinder)

$$J = m \frac{{{r_1}^2} + {{r_2}^2}}{2}$$

Abb. 16: Massenträgheitsmoment J (Hohlzylinder)

Massenträgheitsmoment des Getriebes ermitteln

Das Massenträgheitsmoment J_1 des Getriebes entnehmen Sie den technischen Daten im zugehörigen Katalog (Zielparameter: L200).

Massenträgheitsmoment der Welle samt Wickelhülse ermitteln

Für die Berechnung des Massenträgheitsmoments J der Welle samt Wickelhülse benötigen Sie die folgenden Werte:

- Massenträgheitsmoment J der Welle
 - r: Radius der Welle
 - m: Gewicht der Welle
- Massenträgheitsmoment J der Wickelhülse
 - r₁: innerer Radius der Wickelhülse
 - r₂: äußerer Radius der Wickelhülse
 - m: Gewicht der Wickelhülse

Berechnen Sie das Massenträgheitsmoment J der Welle samt Wickelhülse folgendermaßen:

- 1. Berechnen Sie das Massenträgheitsmoment J der Welle anhand der Formel für Vollzylinder.
- 2. Berechnen Sie das Massenträgheitsmoment J der Wickelhülse anhand der Formel für Hohlzylinder.
- 3. Addieren Sie die Massenträgheitsmomente J der Welle und der Wickelhülse und notieren Sie sich das Ergebnis (Zielparameter: L220).

Massenträgheitsmoment des Wickels ermitteln

Für die Berechnung des Massenträgheitsmoments J des Wickels ohne Welle und Wickelhülse benötigen Sie die folgenden Werte:

- Massenträgheitsmoment J des Wickels
 - r₁: innerer Radius des Wickels bei minimalem Wickeldurchmesser L03
 - r₂: äußerer Radius des Wickels bei maximalem Wickeldurchmesser L04
 - m: Gewicht des Wickels bei maximalem Wickeldurchmesser L04

Berechnen Sie das Massenträgheitsmoment J des Wickels anhand der Formel für Hohlzylinder und notieren Sie sich das Ergebnis (Zielparameter: L240).

5 | Inbetriebnahme STÖBER

5.7.3.2.3.4 Massenträgheit kompensieren

Um beim Beschleunigen der Achse die Materialzugkraft konstant zu halten, kompensieren Sie optional die Massenträgheit der Achse, indem Sie die zuvor ermittelten Massenträgheitsmomente für die entsprechenden Parameter definieren oder deaktivieren Sie die Funktion mithilfe des Overrides.

- ✓ Sie haben das Massenträgheitsmoment J₁ des Getriebes ermittelt.
- ✓ Sie haben das Massenträgheitsmoment J der Welle samt Wickelhülse ermittelt.
- ✓ Sie haben das Massenträgheitsmoment J des Wickels bei maximalem Wickeldurchmesser ermittelt.
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Kompensation.
- L200 Massenträgheitsmoment Getriebe:
 Definieren Sie das Massenträgheitsmoment J des Getriebes für die Kompensation der Massenträgheit der Achse.
- L220 Massenträgheitsmoment Welle:
 Definieren Sie das Massenträgheitsmoment J der Welle und der Wickelhülse für die Kompensation der Massenträgheit der Achse.
- L240 Massenträgheitsmoment Wickel:
 Definieren Sie das Massenträgheitsmoment J des Materials bei maximalem Wickeldurchmesser für die Kompensation der Massenträgheit der Achse.
- L301 Kompensation Massenträgheitsmoment Override:
 Definieren Sie den Override für die Kompensation des Massenträgheitsmoments der Achse, der Wert 0 deaktiviert die Funktion.

Information

Um abrupten Sollwertsprüngen vorzubeugen, sollte die Kompensation des Massenträgheitsmoments nur aktiviert werden (L301 ≠ 0), wenn die Material-Sollgeschwindigkeit extern verrampt wird, da für die Kompensation des Massenträgheitsmoments die Ableitung der Material-Sollgeschwindigkeit verwendet wird.

STÖBER

02/2025 | ID 443345.03

5.7.3.2.4 Material-Sollgeschwindigkeit parametrieren

Das Vorzeichen der Material-Sollgeschwindigkeit definiert die Wickelrichtung: Bei positiver Material-Sollgeschwindigkeit wickelt der Zentralwickler auf (zunehmender Wickeldurchmesser), bei negativer Material-Sollgeschwindigkeit ab (abnehmender Wickeldurchmesser).

Nähere Informationen zur Wickelrichtung finden Sie unter Wickelrichtung [▶ 113].

Material-Sollgeschwindigkeit parametrieren

Parametrieren Sie die maximal zulässige Materialgeschwindigkeit sowie ggfs. den Override für die Sollgeschwindigkeit des Motors und definieren Sie optional die Zeitkonstante für den Filter der Material-Sollgeschwindigkeit.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollgeschwindigkeit.
- 2. L400 Quelle Material-Sollgeschwindigkeit:

Wählen Sie die Quelle der Material-Sollgeschwindigkeit.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L405.
- 3. L410 Materialgeschwindigkeit maximal:

Definieren Sie die maximal zulässige Materialgeschwindigkeit.

4. L406 Material-Sollgeschwindigkeit Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L07 Quelle Geschwindigkeits-Override:

Wenn Sie L00 = 1: Zugkraftsteuerung oder 2: Zugkraftregelung, Drehmomentkorrektur gewählt haben, wählen Sie die Quelle des Geschwindigkeits-Overrides für die Sollgeschwindigkeit des Motors.

- 5.1. Um den Geschwindigkeits-Override relativ vorzugeben, wählen Sie 1: Relativ.
- 5.2. Um den Geschwindigkeits-Override absolut vorzugeben, wählen Sie 2: Absolut.
- 5.3. Um den Geschwindigkeits-Override relativ und absolut vorzugeben, wählen Sie 3: Relativ + absolut.
- 6. L05 Geschwindigkeits-Override relativ:

Wenn Sie für L07 = 1: Relativ oder 3: Relativ + absolut gewählt haben, definieren Sie den relativen Geschwindigkeits-Override.

7. L06 Geschwindigkeits-Override absolut:

Wenn Sie für L07 = 2: Absolut oder 3: Relativ + absolut gewählt haben, definieren Sie den absoluten Geschwindigkeits-Override.

Information

Der Geschwindigkeits-Override ist bei L00 = 1: Zugkraftsteuerung und L00 = 2: Zugkraftregelung, Drehmomentkorrektur erforderlich, um eine Differenz zwischen Sollgeschwindigkeit und Istgeschwindigkeit des Motors zu schaffen, sodass die erforderliche Material-Istzugkraft für ein gleichmäßiges Wickelergebnis aufgebracht werden kann. Beim Aufwickeln wird die Material-Sollgeschwindigkeit entsprechend des Geschwindigkeits-Overrides erhöht und beim Abwickeln entsprechend verringert.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [> 40] beschrieben.

5.7.3.2.5 Material-Istgeschwindigkeit parametrieren

Wenn der Wickeldurchmesser durch den Antriebsregler berechnet wird oder wenn Sie L00 = 5: Geschwindigkeitsregelung gewählt haben, parametrieren Sie die Quelle der Material-Istgeschwindigkeit wie nachfolgend beschrieben.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Istgeschwindigkeit.
- 2. L452 Quelle Material-Istgeschwindigkeit:

Wählen Sie die Quelle der Material-Istgeschwindigkeit.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L450.
- 2.3. Wenn die Material-Istgeschwindigkeit der Material-Sollgeschwindigkeit entspricht, wählen Sie5: Parameter L420.
- 2.4. Wenn ein Master-Encoder als Quelle für die Material-Istgeschwindigkeit dient, wählen Sie 6: Parameter G105.
- 3. L410 Materialgeschwindigkeit maximal:

Definieren Sie die maximal zulässige Materialgeschwindigkeit.

4. L456 Material-Istgeschwindigkeit Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L458 Material-Istgeschwindigkeit invertieren:

Wenn Sie für L00 = 5: Geschwindigkeitsregelung gewählt haben, invertieren Sie ggfs. das Vorzeichen der Material-Istgeschwindigkeit, damit die Vorzeichen der Material-Istgeschwindigkeit und der Material-Sollgeschwindigkeit übereinstimmen.

Information

Wenn der Durchmesser-Rechner als Quelle für den Wickeldurchmesser dient, berechnet der Antriebsregler den Wickeldurchmesser aus der absoluten Motor-Istgeschwindigkeit und aus der absoluten Material-Istgeschwindigkeit. Bei LOO = 5: Geschwindigkeitsregelung müssen die Vorzeichen der Material-Istgeschwindigkeit und der Material-Sollgeschwindigkeit übereinstimmen.

Stellen Sie sicher, dass die parametrierte Material-Istgeschwindigkeit der tatsächlichen Geschwindigkeit des Materials direkt am Wickel entspricht, damit der Wickeldurchmesser und folglich das Solldrehmoment der Achse für ein gleichmäßiges Wickelergebnis exakt berechnet werden können. Die Material-Istgeschwindigkeit muss der tatsächlichen Geschwindigkeit des Materials am Wickel entsprechen.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [40] beschrieben.

5.7.3.2.6 Master-Encoder parametrieren

Wenn ein Master-Encoder als Quelle für die Material-Istgeschwindigkeit dient, parametrieren Sie den Master-Encoder wie nachfolgend beschrieben.

Master-Encoder parametrieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Encoder > Master-Encoder: Skalierung.
- 3. G104 Masterencoder:

Wählen Sie die Schnittstelle, über die der Master-Encoder angeschlossen ist.

- G47 Zähler Master-Wegfaktor, G48 Nenner Master-Wegfaktor:
 Definieren Sie den Umrechnungsfaktor für den Weg des Master-Encoders bezogen auf die Master-Position.
- 5. Wählen Sie Assistent Encoder.
- G297 Maximalgeschwindigkeit Masterencoder
 Definieren Sie die maximal zulässige Geschwindigkeit des Master-Encoders.

Information

Parametrieren Sie G297 Maximalgeschwindigkeit Masterencoder Ihrem Anwendungsfall entsprechend: Wenn G297 zu klein gewählt ist, kommt es bereits bei normalen Betriebsgeschwindigkeiten zur Überschreitung der zulässigen Maximalgeschwindigkeit. Wenn G297 zu groß gewählt ist, können Messfehler des Encoders übersehen werden.

G297 ist abhängig von den folgenden Parametern: G46 Dezimalstellen Master, G47 Zähler Master-Wegfaktor, G48 Nenner Master-Wegfaktor und G49 Maßeinheit Master. Wenn Sie Änderungen an einem der genannten Parameter vorgenommen haben, passen Sie auch G297 entsprechend an.

Master-Encoder: Schnittstelle parametrieren

Die verfügbaren Anschlüsse variieren je nach Baureihe und ggfs. Klemmenmodul des Antriebsreglers.

- ✓ Sie haben die Schnittstelle für den Master-Encoder gewählt (G104 ≠ 0: Inaktiv).
- 1. Wenn Sie den Master-Encoder über die X4-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X4.
 - 1.1. H00 X4-Funktion:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 1.2. H03 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

- 1.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.
- 2. Wenn Sie den Master-Encoder über Schnittstelle X101 oder X103 (DI) angeschlossen haben, wählen Sie Assistent Encoder > X101/X103 (DI).
 - 2.1. H40 DI-Encoder:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 2.2. H43 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

2.3. H41 DI-Zähler, H42 DI-Nenner:

Parametrieren Sie das Wertepaar für die Skalierung des Encoders am digitalen Eingang.

5 | Inbetriebnahme

- 3. Wenn Sie den Master-Encoder über die X120-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X120.
 - 3.1. H120 X120-Funktion:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 3.2. H123 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

- 3.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.
- 4. Wenn Sie den Master-Encoder über die X140-Schnittstelle angeschlossen haben, wählen Sie Assistent Encoder > X140.
 - 4.1. H140 X140-Funktion:

Wählen Sie den Encodertyp, der an der Schnittstelle angeschlossen ist.

- ⇒ Abhängig vom ausgewählten Encodertyp werden Ihnen die zugehörigen Parameter eingeblendet.
- 4.2. H143 Encoderausführung:

Wählen Sie, ob der Encoder in rotatorischer oder translatorischer Ausführung vorliegt.

4.3. Parametrieren Sie die Schnittstelle entsprechend den Eigenschaften des Master-Encoders.

5.7.3.2.7 Material-Sollzugkraft parametrieren

Wenn Sie für L00 = 1: Zugkraftsteuerung, 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie die Material-Sollzugkraft wie nachfolgend beschrieben.

Material-Sollzugkraft parametrieren

Wählen Sie die Quelle sowie den Modus für die Vorgabe der Material-Sollzugkraft und definieren Sie optional die Zeitkonstante für den Filter der Material-Sollzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollzugkraft.
- 2. L498 Quelle Material-Sollzugkraft:

Wählen Sie die Quelle der Material-Sollzugkraft.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L496.
- 3. L497 Material-Sollzugkraft maximal:

Definieren Sie die maximal zulässige Materialzugkraft, die zusätzlich für die Skalierung der Werte am analogen Eingang verwendet wird (0 % = 0 N, 100 % = 1497).

4. L495 Material-Sollzugkraft Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5. L500 Material-Sollzugkraft Modus:

Wählen Sie den Modus für die Vorgabe der Material-Sollzugkraft.

- 5.1. Wenn die Material-Sollzugkraft unverändert vorgegeben werden soll, wählen Sie0: Direkte Material-Sollzugkraft.
- 5.2. Wenn die Material-Sollzugkraft proportional zum Durchmesser erhöht werden soll, wählen Sie1: Material-Sollzugkraft proportional zu D.
- 5.3. Wenn das Solldrehmoment des Motors unabhängig vom Durchmesser konstant gehalten werden soll, wählen Sie 2: Konstantes Drehmoment.
- 5.4. Wenn ein durchmesserabhängiger Override auf die Material-Sollzugkraft angewandt werden soll, wählen Sie 3: Kennlinie.
- ⇒ Assistent Material-Sollzugkraft: Kennlinie für die Parametrierung des durchmesserabhängigen Material-Sollzugkraft-Override wird eingeblendet.
- 5.5. Wenn das Steuerwort L150 des Zentralwicklers als Quelle für die Auswahl des Modus dient, wählen Sie 4: Parameter L150.

Information

Aus der vorgegebenen Material-Sollzugkraft und dem Wickeldurchmesser wird das erforderliche Solldrehmoment für die Achse berechnet. Negative Werte für die Material-Sollzugkraft werden auf 0 begrenzt. Stellen Sie für ein gleichmäßiges Wickelergebnis sicher, dass die Material-Sollzugkraft korrekt parametriert ist.

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [> 40] beschrieben.

5 | Inbetriebnahme STÖBER

Material-Sollzugkraft: Kennlinie parametrieren

Wenn Sie die vorgegebene Material-Sollzugkraft durch einen durchmesserabhängigen Override modifizieren wollen, definieren Sie die Wertepaare aus Wickeldurchmesser und Material-Sollzugkraft-Override.

- ✓ Sie wollen die Material-Sollzugkraft mit einem durchmesserabhängigen Override modifizieren (L500 = 3: Kennlinie oder 4: Parameter L150).
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Sollzugkraft > Material-Sollzugkraft: Kennlinie.
- L600 Material-Sollzugkraft-Kennlinie Durchmesser, L610 Material-Sollzugkraft-Kennlinie Override: Definieren Sie die Wertepaare aus Wickeldurchmesser und Material-Sollzugkraft-Override für den durchmesserabhängigen Material-Sollzugkraft-Override.

5.7.3.2.8 Material-Istzugkraft parametrieren

Wenn Sie für LOO = 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie die Quelle der Material-Istzugkraft wie nachfolgend beschrieben.

Material-Istzugkraft parametrieren

Wählen Sie die Quelle für die Vorgabe der Material-Istzugkraft und definieren Sie optional die Zeitkonstante für den Filter der Material-Istzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Material-Istzugkraft.
- 2. L492 Quelle Material-Istzugkraft:

Wählen Sie die Quelle der Material-Istzugkraft.

- 2.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L490.
- 3. L497 Material-Sollzugkraft maximal:

Definieren Sie die maximal zulässige Materialzugkraft, die zusätzlich für die Skalierung der Werte am analogen Eingang verwendet wird (0 % = 0 N, 100 % = 1497).

4. L489 Material-Istzugkraft Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

5.7.3.2.9 Tänzer parametrieren

Wenn Sie für L00 = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur gewählt haben, parametrieren Sie den Tänzer wie nachfolgend beschrieben.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Tänzer.
- 2. L95 Tänzer-Sollposition:

Definieren Sie die Sollposition des Tänzers.

3. L90 Quelle Tänzer-Istposition:

Wählen Sie die Quelle der Tänzer-Istposition.

- 3.1. Wenn ein analoger Eingang als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3.2. Wenn ein Feldbus als Quelle dient, wählen Sie 4: Parameter L96.
- 4. L91 Tänzer-Istposition AI unskaliert, L92 Tänzer-Istposition AI skaliert:

Wenn ein analoger Eingang als Quelle dient, definieren Sie den gewünschten Wertebereich am analogen Eingang sowie den gewünschten Wertebereich der Tänzer-Istposition für die Skalierung (Einheit: $\% \rightarrow$ mm).

5. L93 Tänzer-Istposition Zeitkonstante:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

L97 Tänzer-Sollposition minimal, L98 Tänzer-Sollposition maximal:
 Definieren Sie den zulässigen Wertebereich für die Tänzer-Sollposition.

STÖBER 5 | Inbetriebnahme

5.7.3.2.10 PID-Regler parametrieren

Wenn Sie für L00 eine der folgenden Wickelmethoden gewählt haben, parametrieren Sie den PID-Regler wie nachfolgend beschrieben.

- 2: Zugkraftregelung, Drehmomentkorrektur
- 3: Zugkraftregelung, Geschwindigkeitskorrektur
- 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur
- 5: Geschwindigkeitsregelung

Nähere Informationen zum PID-Regler in der Applikation Drive Based Center Winder finden Sie unter PID-Regler [116].

Skalierung parametrieren

Parametrieren Sie abhängig von der gewählten Wickelmethode die Skalierung der Ein- und Ausgänge des PID-Reglers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler.
- 2. L357 Materialzugkraft Skalierung:

Wenn Sie für L00 = 2: Zugkraftregelung, Drehmomentkorrektur oder 3: Zugkraftregelung, Geschwindigkeitskorrektur gewählt haben, definieren Sie die Skalierung der Materialzugkraft für den PID-Regler.

3. L358 Materialgeschwindigkeit Skalierung:

Wenn Sie für L00 = 3: Zugkraftregelung, Geschwindigkeitskorrektur, 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur oder 5: Geschwindigkeitsregelung gewählt haben, definieren Sie die Skalierung der Materialgeschwindigkeit für den PID-Regler.

4. L359 Tänzerposition Skalierung:

Wenn Sie für L00 = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur gewählt haben, definieren Sie die Skalierung der Materialzugkraft für den PID-Regler.

PID-Regler parametrieren

Parametrieren Sie unabhängig von der gewählten Wickelmethode die restlichen Einstellungen des PID-Reglers.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > PID-Regler.
- 2. L370 Quelle PID-Regler Freigabe:

Wählen Sie die Quelle für die Freigabe des PID-Reglers.

- 2.1. Um den PID-Regler grundsätzlich freizugeben, wählen Sie 1: High.
- 2.2. Wenn das Steuerwort der Applikation als Quelle dient, wählen Sie 2: Parameter L150.
- 2.3. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 3. L350 PID-Regler Kreisverstärkung:

Definieren Sie die Kreisverstärkung K₀ des PID-Reglers.

4. L351 PID-Regler Proportionalbeiwert:

Definieren Sie den Proportionalbeiwert $K_{\scriptscriptstyle P}$ des PID-Reglers.

5. L352 PID-Regler Integrierbeiwert:

Definieren Sie den Integrierbeiwert K, des PID-Reglers.

6. L353 PID-Regler Differenzierzeit:

Definieren Sie die Differenzierzeit T_D des PID-Reglers.

7. L354 Tiefpass Differentiation PID:

Wenn die Qualität des Signals es erfordert, passen Sie die Zeitkonstante für den Filter entsprechend an.

L355 Negativer Maximalwert PID, L356 Positiver Maximalwert PID:
 Definieren Sie die maximal zulässige positive und sowie die maximal zulässige negative Stellgröße des PID-Reglers.

5 | Inbetriebnahme STÖBER

5.7.3.2.11 Materialriss-Überwachung parametrieren

Wenn Sie die Materialriss-Überwachung nutzen möchten, wählen Sie die gewünschte Quelle und parametrieren Sie optional Applikations-Ereignis 0. Bei L00 = 2: Zugkraftregelung, Drehmomentkorrektur und 3: Zugkraftregelung, Geschwindigkeitskorrektur definieren Sie bei Verwendung des Algorithmus zusätzlich die minimal zulässige Materialzugkraft.

Nähere Informationen zur Materialriss-Überwachung finden Sie unter Materialriss-Überwachung [116].

Materialriss-Überwachung parametrieren

Parametrieren Sie die Quelle der Materialriss-Überwachung und definieren Sie bei Verwendung des Algorithmus ggfs. die minimal zulässige Materialzugkraft.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Materialriss-Überwachung.
- 2. L381 Quelle Materialriss-Überwachung:

Wählen Sie die Quelle für die Materialriss-Überwachung.

- 2.1. Wenn ein Sensor als Quelle dient, wählen Sie 1: Sensor.
- 2.2. Wenn Sie die Materialzugkraft anhand eines Algorithmus überwachen wollen, wählen Sie 2: Algorithmus.
- 2.3. Wenn ein Sensor als Quelle dient und Sie zusätzlich den Algorithmus verwenden wollen, wählen Sie3: Algorithmus + Sensor.
- 3. L382 Materialzugkraft minimal:
 - Wenn Sie für L381 = 2: Algorithmus oder 3: Algorithmus + Sensor gewählt haben, definieren Sie ggfs. die minimal zulässige Material-Istzugkraft für die Materialriss-Überwachung (erforderlich für L00 = 2: Zugkraftregelung, Drehmomentkorrektur und 3: Zugkraftregelung, Geschwindigkeitskorrektur).
- ⇒ Bei Auslösen der Materialriss-Überwachung wird im Statuswort der Applikation das entsprechende Bit gesetzt (Signal: L904; Statuswort: L155, Bit 7).

Materialriss-Sensor parametrieren

Wenn ein Sensor als Quelle für die Materialriss-Überwachung dient, parametrieren Sie für diesen die Quelle (L381 = 1: Sensor oder 3: Algorithmus + Sensor).

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Quellen > Digitale Signale Zentralwickler: Quelle.
- 2. L380 Quelle Materialriss-Sensor:

Wählen Sie die Quelle für den Materialriss-Sensor.

- 2.1. Wenn das Steuerwort des Zentralwicklers als Quelle dient, wählen Sie 2: Parameter L150.
- 2.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.

Applikations-Ereignis 0 parametrieren

Wenn Sie im Kontext der Materialriss-Überwachung Applikations-Ereignis 0 auslösen möchten, parametrieren Sie zusätzlich das gewünschte Level für die Auswertung des Ereignisses.

- 1. Wählen Sie Assistent Schutzfunktionen > Schutzfunktionen: Applikation.
- 2. U100 Level Applikations-Ereignis 0:

Wählen Sie das gewünschte Level der Schutzfunktion für die Materialriss-Überwachung.

- 2.1. Um das Ereignis mit geringer Priorität auszuwerten, wählen Sie 1: Meldung.
- 2.2. Um das Ereignis mit mittlerer Priorität und Störungsreaktion nach Ablauf der Toleranzzeit auszuwerten, wählen Sie 2: Warnung.
- 2.3. Um das Ereignis mit hoher Priorität und unmittelbarer Störungsreaktion auszuwerten, wählen Sie 3: Störung.
- 3. U101 Zeit Applikations-Ereignis 0:

Wenn Sie für U100 = 2: Warnung Warnung gewählt haben, definieren Sie die gewünschte Toleranzzeit, nach deren Ablauf der Antriebsregler in Störung geht.

Wenn Sie die Materiallänge auf dem Wickel anhand des Wickeldurchmessers berechnen möchten, parametrieren Sie die Materialdicke und optional einen Vergleichswert für die Materiallänge, um bei Erreichen des Vergleichswerts das entsprechende Bit im Statuswort des Zentralwicklers zu setzen.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Zentralwickler > Materiallänge.
- 2. L40 Materialdicke:
 - Definieren Sie die Materialdicke für die Berechnung der Materiallänge auf dem Wickel.
- L42 Materiallänge Vergleichswert:
 Definieren Sie den Vergleichswert für die Materiallänge auf dem Wickel.
- Die Materiallänge auf dem Wickel wird anhand des aktuellen sowie maximal zulässigen Durchmessers berechnet.
- ⇒ Bei Erreichen des Vergleichswerts für die Materiallänge wird das entsprechende Bit im Statuswort des Zentralwicklers gesetzt (L155, Bit 9).

Information

Beim Aufwickeln gilt der Vergleichswert als erreicht, wenn die Materiallänge den Vergleichswert überschritten hat (L41 > L42). Beim Abwickeln gilt der Vergleichswert als erreicht, wenn die Materiallänge den Vergleichswert unterschritten hat (L41 < L42).

5.7.3.3 Drehmoment/Kraft über Betriebsart begrenzen

Die grundsätzliche Begrenzung von Drehmoment/Kraft über die Mechanik erfolgt bei der Projektierung des Achsmodells. Sie können optional eine zusätzliche Begrenzung von Drehmoment/Kraft über die Betriebsart parametrieren.

- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Betriebsart Kommando.
- 2. J47 Maximales positives M/F, J48 Maximales negatives M/F:
 Geben Sie die maximal erlaubten positiven und negativen Werte für Drehmoment/Kraft an.

Information

Die mechanische Begrenzung für Drehmoment/Kraft erfolgt über das Achsmodell durch CO3 Maximales positives M/F und CO5 Maximales negatives M/F. Die zusätzliche Begrenzung über die Betriebsart ist optional und bezieht sich auf die Werte, die Sie im Achsmodell festgelegt haben (Bezugswerte: CO3, CO5).

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [\(\bullet \) 40] beschrieben.

5.7.3.4 Kommandospezifische Bewegungsgrößen parametrieren

Die Parameter für die Bewegungsgrößen Beschleunigung, Verzögerung und Ruck sind standardmäßig nicht im Prozessdaten-Mapping enthalten. Sie können die Werte für die Bewegungsgrößen entweder fest auf dem Antriebsregler hinterlegen oder die entsprechenden Parameter dem Prozessdaten-Mapping hinzufügen, um die Werte von der Steuerung zu empfangen.

Information

Bevor Sie mit der Parametrierung der betriebsartspezifischen Bewegungsgrößen starten, parametrieren Sie die allgemeinen Bewegungsgrößen und Signalquellen. Wenn Sie für Ihr Antriebsprojekt Sollwerte für Geschwindigkeit, Geschwindigkeits-Override oder Drehmoment/Kraft aus externen Quellen beziehen, gehen Sie dazu vor wie in Kapitel Allgemeine Bewegungsgrößen und Signalquellen [> 36] beschrieben.

5.7.3.4.1 Bewegungsgrößen hinterlegen: Antriebsregler

Wenn Sie die Vorgaben für Beschleunigung, Verzögerung und Ruck fest auf dem Antriebsregler hinterlegen wollen, prüfen Sie die Default-Werte in Assistent Betriebsart Kommando und passen Sie diese gegebenenfalls auf Ihr Antriebsprojekt an.

- ✓ Sie haben die Betriebsart Kommando aktiviert.
- ✓ Parameter J44, J45 und J46 sind nicht Teil des Prozessdaten-Mappings.
- 1. Wählen Sie Assistent Applikation Drive Based Center Winder > Betriebsart Kommando.
- J44 Beschleunigung, J45 Verzögerung, J46 Ruck:
 Definieren Sie die Sollwerte für Beschleunigung, Verzögerung und Ruck.
- ⇒ Die Vorgaben für Beschleunigung, Verzögerung und Ruck werden fest auf dem Antriebsregler hinterlegt.

Information

Die Parameter in Assistent Betriebsart Kommando werden von der Steuerung beschrieben, sobald eine Online-Verbindung zwischen Antriebsregler und Steuerung besteht und sofern die Parameter Teil des Prozessdaten-Mappings sind. In diesem Zustand können Sie in den Parametern die Werte ablesen, die der Antriebsregler von der Steuerung empfängt. Über Parameter J41 Motion-ID können Sie den laufenden Fahrauftrag identifizieren, um die Statusbit richtig zuzuordnen.

5.7.3.4.2 Bewegungsgrößen hinterlegen: Prozessdaten-Mapping

Wenn Sie die Vorgaben für Beschleunigung, Verzögerung und Ruck über eine Steuerung vorgeben wollen, ergänzen Sie die gewünschten Parameter sowohl in den Empfangs-Prozessdaten des Antriebsreglers als auch in den Sende-Prozessdaten der Steuerung.

EtherCAT: Bewegungsgrößen in PDO-Mapping ergänzen

Wenn Sie Werte für Bewegungsgrößen durch eine Steuerung vorgeben wollen, ergänzen Sie die gewünschten Parameter in den Empfangs-Prozessdaten des Antriebsreglers.

- ✓ Sie haben die Betriebsart Kommando aktiviert.
- 1. Wählen Sie Assistent EtherCAT > Empfangs-Prozessdaten RxPDO.
- 2. Spalte Koordinate:

Geben Sie in der Spalte Koordinate die Koordinate des Parameters an, den Sie in das Prozessdaten-Mapping aufnehmen wollen.

- 2.1. Wenn Sie die Werte für Beschleunigung von der Steuerung beziehen wollen, geben Sie J44 ein.
- 2.2. Wenn Sie die Werte für Verzögerung von der Steuerung beziehen wollen, geben Sie J45 ein.
- 2.3. Wenn Sie die Werte für Ruck von der Steuerung beziehen wollen, geben Sie J46 ein.
- ⇒ Der Parameter wird in die Empfangs-Prozessdaten des Antriebsreglers aufgenommen.

 In den Spalten Name, Datentyp und Länge werden Ihnen Informationen über den Parameter angezeigt.
- 3. Ergänzen Sie Ihre Änderungen am Prozessdaten-Mapping auch in den Sende-Prozessdaten der Steuerung.

PROFINET: Bewegungsgrößen in PZD-Mapping ergänzen

Wenn Sie Werte für Bewegungsgrößen durch eine Steuerung vorgeben wollen, ergänzen Sie die gewünschten Parameter in den Empfangs-Prozessdaten des Antriebsreglers.

- ✓ Sie haben die Betriebsart Kommando aktiviert.
- 1. Wählen Sie Assistent PROFINET > Empfangs-Prozessdaten RxPZD.
- 2. Spalte Koordinate:

Geben Sie in der Spalte Koordinate die Koordinate des Parameters an, den Sie in das Prozessdaten-Mapping aufnehmen wollen.

- 2.1. Wenn Sie die Werte für Beschleunigung von der Steuerung beziehen wollen, geben Sie J44 ein.
- 2.2. Wenn Sie die Werte für Verzögerung von der Steuerung beziehen wollen, geben Sie J45 ein.
- 2.3. Wenn Sie die Werte für Ruck von der Steuerung beziehen wollen, geben Sie J46 ein.
- ⇒ Der Parameter wird in die Empfangs-Prozessdaten des Antriebsreglers aufgenommen.
 In den Spalten Name, Datentyp und Länge werden Ihnen Informationen über den Parameter angezeigt.
- 3. Ergänzen Sie Ihre Änderungen am Prozessdaten-Mapping auch in den Sende-Prozessdaten der Steuerung.

5 | Inbetriebnahme STÖBER

5.7.3.5 Startsignal parametrieren

Definieren Sie die Quelle für das Execute-Signal, um in der Betriebsart Kommando ein in J40 ausgewähltes Bewegungskommando zu starten.

- 1. Wählen Sie Applikation Drive Based Center Winder > Quellen > Digitale Signale Applikation: Quelle.
- 2. I100 Quelle Execute:
 - 2.1. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
 - 2.2. Wenn das Steuerwort I210 der Applikation als Quelle dient, wählen Sie 2: Parameter.
 - ⇒ Bit 0 des Steuerworts ist als Quelle gesetzt.

5.7.3.6 Continue-Signal parametrieren

Um die Continue-Funktion zur Wiederaufnahme eines unterbrochenen Bewegungskommandos zu nutzen, konfigurieren Sie die Quelle des Continue-Signals. Wenn Sie die Continue-Funktion nicht nutzen, wählen Sie über J40 ein neues Kommando und starten Sie dieses über das Startsignal (Execute).

Nähere Informationen zur Continue-Funktion, fortsetzbaren Bewegungskommandos und Abbruchursachen finden Sie unter Continue-Funktion.

- 1. Wählen Sie Applikation Drive Based Center Winder > Betriebsart Kommando > Digitale Signale Betriebsart: Quelle.
- 2. J38 Quelle Continue:

Um die Continue-Funktion zur Wiederaufnahme unterbrochener Bewegungskommandos zu nutzen, wählen Sie die Quelle für das Continue-Signal.

- 2.1. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 2.2. Wenn das Steuer-Byte J37 der Betriebsart Kommando als Quelle dient, wählen Sie 2: Parameter.
- ⇒ Bit 0 des Steuer-Byte ist als Quelle gesetzt.

6 Mehr zu Drive Based Center Winder?

Nachfolgende Kapitel fassen die wesentlichen Begriffe, Module und Beziehungen rund um Drive Based Center Winder zusammen.

6.1 Drive Based Center Winder – Konzept

Applikationen wie Drive Based Center Winder, die Bewegungen im Antrieb selbst berechnen und ausregeln, werden als antriebsbasierende Systeme bezeichnet. Sie sind entweder via Feldbus vernetzt oder beziehen Signale und Sollwerte über analoge und digitale Hardware-Eingänge.

Die Applikation Drive Based Center Winder stellt Ihnen einen an PLCopen angelehnten Standardsatz an Bewegungskommandos zur Verfügung, der um eigene Bewegungskommandos ergänzt wird und somit eine flexible antriebsbasierende Bewegungssteuerung für die Regelungsarten Position, Geschwindigkeit und Drehmoment/Kraft bietet.

Die Bewegungskommandos sind für unterschiedliche Anwendungsfälle zu entsprechenden Betriebsarten zusammengefasst. Abhängig von der gewählten Betriebsart werden die Bewegungsgrößen erfasst, die zur Parametrierung individueller Bewegungsprofile benötigt werden, wie z. B. Soll- oder Begrenzungswerte.

Auf Grundlage sämtlicher parametrierter Daten berechnet der Motion-Kern schließlich ein individuelles Bewegungsprofil. Vorgegebene Sollwerte werden an die Regelungskaskade übertragen, die wiederum den Motor ansteuert.

Zusätzliche Assistenten wie Steuertafeln oder der Tippbetrieb dienen der Inbetriebnahme, dem Konfigurationstest oder sind für den Notbetrieb konzipiert.

Nachfolgende Grafik zeigt die Komponenten und Konfigurationsschritte der Applikation Drive Based Center Winder. Die hell dargestellten Elemente sind optional.

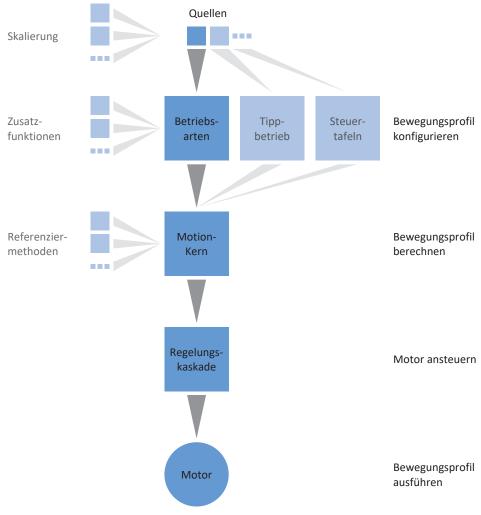


Abb. 17: Komponenten und Konfigurationsschritte

6.1.1 Betriebsarten

Bei den Betriebsarten der Applikation Drive Based Center Winder handelt es sich um anwendungsspezifisch gebündelte Befehlssätze zur Konfiguration individueller Bewegungsprofile für den Produktionsbetrieb.

Durch flexible benutzerdefinierte Anpassungsmöglichkeiten der Betriebsarten bietet die Applikation Drive Based Center Winder einen kompakten und zugleich äußerst variablen Funktionsumfang, der für die unterschiedlichsten Anwendungsfälle der Antriebstechnik geeignet ist. Nach Wahl der für den jeweiligen Anwendungsfall geeigneten Betriebsart konzentriert sich der Anwender nur noch auf die Parametrierung der wichtigsten Abläufe für seine Applikation.

Beachten Sie, dass ein Antriebsregler ausschließlich eine Betriebsart pro Achse verarbeiten kann.

6.1.1.1 Zentralwickler

Betriebsart Zentralwickler ist auf das zum Wickeln wesentliche Bewegungskommando 30: MC_Winder reduziert, mit dem die Sollwerte für den Zentralwickler entsprechend des gewählten Steuer- oder Regelverfahrens berechnet werden.

Die Soll- und Istwerte für Bewegungsgrößen wie z. B. die Materialzugkraft oder die Materialgeschwindigkeit können abhängig von der Baureihe des Antriebsreglers entweder von einer Steuerung via Feldbus oder über die analogen Eingänge berücksichtigt werden.

Typische Anwendungsbeispiele sind Wickelanwendungen wie z. B. das Aufwickeln, Abwickeln oder Umwickeln von Materialien wie Kunststoff, Draht, Textilien oder Papier.

6.1.1.2 Kommando

Betriebsart Kommando ermöglicht einem Antriebsregler, parametrierbare Bewegungen abzufahren. Dabei werden eine Reihe von Bewegungskommandos verarbeitet, die dem Verhalten der Motion-Control-Blöcke des PLCopen-Standards entsprechen.

Eine Steuerung koordiniert die zeitlichen Abläufe, indem sie an PLCopen angelehnte Bewegungskommandos selektiert, wie beispielsweise MC_MoveAbsolute (fahre auf absolute Sollposition) oder MC_MoveRelative (fahre relativ zur Istposition).

Parameter wie Sollposition, Geschwindigkeit oder Drehmomentgrenze können individuell definiert werden.

Typische Anwendungsbeispiele sind einzelne Achsbewegungen, die von einer Steuerung (SPS) an die Antriebsregler kommuniziert werden.

6.1.2 Tippbetrieb

Für die Inbetriebnahme, den Notbetrieb sowie für Wartungs- oder Reparaturarbeiten steht Ihnen der herstellerspezifische Tippbetrieb (manuelles Verfahren) zur Verfügung. Mit dem Tippbetrieb können Sie den Antrieb unter anderem steuerungsunabhängig bewegen.

Sie können den Tippbetrieb entweder über die Bedieneinheit des Antriebsreglers SD6, über die Steuertafel Tippen oder über eine Steuerung nutzen, die die Handfahrt übernimmt.

6.1.3 Steuertafeln

Die Steuertafeln sind besondere Assistenten der DriveControlSuite, mit denen Sie die Kontrolle über die Achse übernehmen können. Mithilfe der Steuertafeln können Sie so eine Achse manuell freigeben und verfahren, auch wenn der Antriebsregler keine Bedieneinheit hat oder nur schwer zugänglich ist.

Über die Steuertafeln können Sie beispielsweise die Anschlussverdrahtung, die Projektierung Ihres physischen Achsmodells oder die Parametrierung Ihrer Applikation in der jeweiligen Betriebsart prüfen, bevor Sie in den Normalbetrieb wechseln.

Es stehen folgende Steuertafeln zur Verfügung:

- Steuertafel Tippen dient der Überprüfung des projektierten Achsmodells im Tippbetrieb.
- Steuertafel Motion stellt Ihnen einen Standardsatz an Bewegungskommandos zur Verfügung, die an PLCopen angelehnt sind. Über die Steuertafel können Sie, unabhängig von Applikations- und Feldbus-Schnittstelle, ein Bewegungsprofil direkt für den Motion-Kern der Achse parametrieren, um die Grundfunktionen des Antriebsreglers zu prüfen.

Da Steuertafeln den Normalbetrieb übersteuern, können diese nur bei ausgeschalteter Freigabe aktiviert und sollten ausschließlich von erfahrenen Anwendern bedient werden.

6.1.4 Motion-Kern

Der Motion-Kern berechnet aufgrund der projektierten und parametrierten Daten ein Bewegungsprofil samt zugehöriger Detailbewegungen als Basis für den Antriebsregler sowie verbindliche Sollwerte für die Regelungskaskade.

6.1.5 Quellen

Die Signale, die einen Antriebsregler ansteuern, können aus unterschiedlichen Quellen bezogen werden. Jede der möglichen Betriebsarten besitzt einen Satz von Sollwerten, der fest in der Software hinterlegt ist. Darüber hinaus existieren Signale für den Bewegungsstart oder Bewegungsbegrenzungen oder Geschwindigkeitsvorgaben, die in der Regel von externen Quellen stammen.

Üblicherweise dient ein Feldbus als Signalquelle; jedoch sind auch analoge oder digitale Hardware-Eingänge oder auch ein Mischbetrieb aus den genannten Quellen möglich.

Werte, die aus externen Quellen bezogen werden, werden im Regelfall automatisch auf die hinterlegten Bezugswerte angepasst, d. h. kalibriert und skaliert berechnet.

6.1.5.1 Analoge Eingänge

Die analogen Eingänge des Antriebsreglers können in Ihrem Antriebsprojekt als Quellen für Soll- und Istwerte der Applikation dienen, wenn Sie beispielsweise Sensoren einsetzen, um Bewegungsgrößen wie Geschwindigkeiten oder Drehmomente/Kräfte zu messen.

Die verfügbaren Anschlüsse variieren je nach Baureihe und gegebenenfalls Klemmenmodul des Antriebsreglers.

Nähere Informationen zu den verfügbaren Anschlüsse entnehmen Sie dem Handbuch des jeweiligen Antriebsreglers (siehe Weiterführende Informationen [*) 164]).

Information

Wenn ein analoger Eingang als Quelle für die Applikation dient, parametrieren, kalibrieren und skalieren Sie den jeweiligen analogen Eingang wie in Analoge Eingänge parametrieren [\ 40] beschrieben.

02/2025 | ID 443345.03

Analoger Eingang Al1

Abhängig davon, ob der analoge Eingang Al1 als Spannungsquelle oder als Stromquelle verwendet wird, gelten beispielhaft die nachfolgenden Signalflusspläne (Betriebsart: F116).

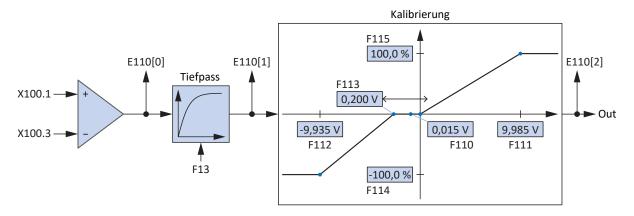


Abb. 18: Signalflussplan: analoger Eingang Al1 (F116 = 0: -10V bis 10V)

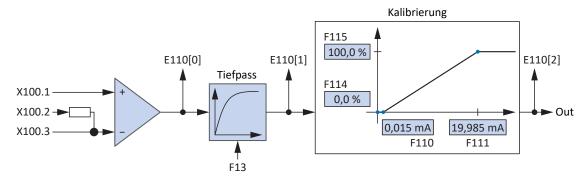


Abb. 19: Signalflussplan: analoger Eingang Al1 (F116 = 1: 0 bis 20mA)

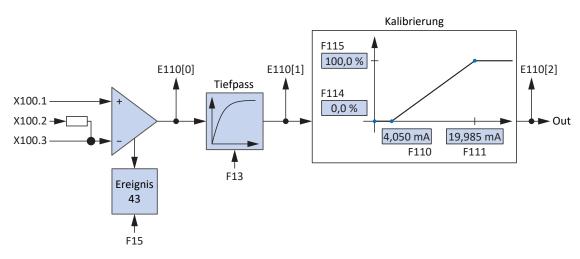


Abb. 20: Signalflussplan: analoger Eingang Al1 (F116 = 2: 4 bis 20mA)

Analoger Eingang AI2

Für den analogen Eingang AI2 als Stromquelle gilt beispielhaft der nachfolgende Signalflussplan.

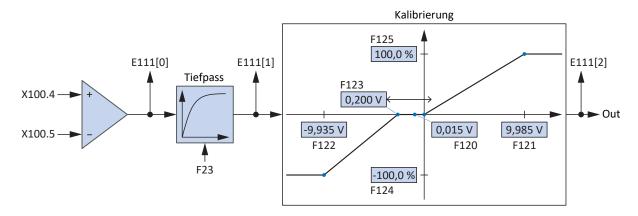


Abb. 21: Signalflussplan: analoger Eingang Al2

Analoger Eingang AI3

Für den analogen Eingang AI3 als Stromquelle gilt beispielhaft der nachfolgende Signalflussplan.

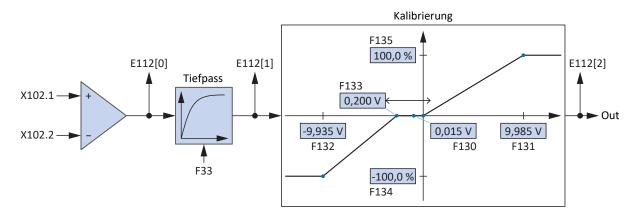
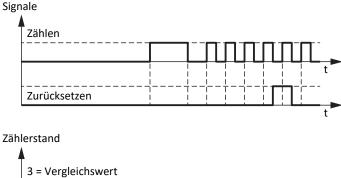


Abb. 22: Signalflussplan: analoger Eingang AI3

02/2025 | 1D 443345.03

6.1.6 Zusatzfunktionen


Jede der zur Verfügung stehenden Betriebsarten kann durch antriebsbasierte Zusatzfunktionalitäten erweitert werden. Diese bieten beispielsweise ein komfortables Monitoring von Prozessgrößen wie Position, Geschwindigkeit oder Drehmoment/Kraft (Nocken, Komparatoren) oder die Regelung externer Prozessgrößen (PID-Regler).

6.1.6.1 Zusatzfunktion Zähler

In Applikationen vom Typ Drive Based stellt Ihnen die Zusatzfunktion Zähler bis zu 4 voneinander unabhängige Zähler zur Verfügung, mit denen Sie kleinere Automatisierungsaufgaben direkt im Antriebsregler realisieren können, wie z. B. die direkte oder indirekte Ansteuerung der digitalen Ausgänge.

Funktionsweise

Je Zähler definieren Sie einen Vergleichswert, ein digitales Signal zum Erhöhen des Zählerstands sowie ein digitales Signal zum Zurücksetzen des Zählerstands (Vergleichswert: N41; Quelle Erhöhen: N43; Quelle Zurücksetzen: N46). Mit jeder steigenden Flanke des Zählsignals wird der Zählerstand um 1 erhöht, bis der Vergleichswert erreicht ist (Zählerstand: N44). Das Erreichen des Vergleichswerts wird durch ein Statussignal ausgegeben und weitere Zählsignale werden ignoriert, bis der Zählerstand zurückgesetzt oder der Vergleichswert erhöht wird (Status: N42).

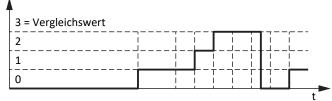


Abb. 23: Zusatzfunktion Zähler: Beispiel

Als Quelle für die Signale zum Erhöhen und Zurücksetzen des Zählerstands können die digitalen Eingänge des Antriebsreglers dienen (direkt oder invertiert), Parameter mit Datentyp BOOL oder einzelne Bit von Parametern mit Datentyp BYTE, WORD oder DWORD (Beispiel Bit-Adressierung: E49.4 für Ursache Einschaltsperre = STO). Das Signal zum Zurücksetzen hat Priorität und wird unmittelbar ausgeführt, solange es aktiv ist, bleibt der Zählerstand bei 0 und steigende Flanken zum Erhöhen des Zählerstands werden ignoriert.

6.1.6.1.1 Zähler parametrieren

Um die Zusatzfunktion Zähler zu parametrieren, gehen Sie grundsätzlich vor wie nachfolgend beschrieben.

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen.
- 3. Aktivieren Sie die Option Zähler.
 - ⇒ Die Zusatzfunktion wird aktiviert, die zugehörigen Assistenten und Parameter werden eingeblendet.
- 4. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen > Zähler.
- 5. Nummer:

Wählen Sie den gewünschten Zähler und aktivieren Sie ihn über die zugehörige Option.

- ⇒ Die zugehörigen Parameter werden eingeblendet.
- 6. N41 Zähler Vergleichswert:

Definieren Sie den Vergleichswert.

7. N43 Quelle Zähler:

Wählen Sie die Quelle für das Signal, das den Zählerstand bis zum Erreichen des Vergleichswert um jeweils 1 erhöht.

- 7.1. Wenn ein Parameter als Quelle dient, wählen Sie 2: Parameter.
- 7.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 8. N45 Zähler indirektes Lesen:

Wenn ein Parameter als Quelle für das Erhöhen des Zählers dient, definieren Sie die gewünschte Koordinate, ggfs. mit Bit-Adressierung.

9. N46 Quelle Zählerstand zurücksetzen:

Wählen Sie die Quelle für das Signal, das den Zählerstand auf 0 zurücksetzt.

- 9.1. Wenn ein Parameter als Quelle dient, wählen Sie 2: Parameter.
- 9.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 10. N47 Zählerstand zurücksetzen via Parameter:

Wenn ein Parameter als Quelle für das Zurücksetzen des Zählers dient, definieren Sie die gewünschte Koordinate, ggfs. mit Bit-Adressierung.

6.1.6.1.2 Zähler parametrieren: Beispiele

Sie können die Zusatzfunktion Zähler beispielsweise nutzen, um über das Erreichen des Vergleichswerts die digitalen Ausgänge direkt anzusteuern.

Digitalen Ausgang direkt ansteuern

Um einen digitalen Ausgang direkt über den Zähler anzusteuern, können Sie den Status des Zählers als Quelle nutzen.

- 1. Aktivieren Sie die Zusatzfunktion Zähler.
- 2. Wählen Sie Assistent Zähler.
- 3. Parametrieren Sie den Zähler Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie für den gewünschten digitalen Ausgang den Status des Zählers als Quelle (z. B. DO1: F61 = N42).
- ⇒ Der digitale Ausgang wird direkt über den Status des Zählers angesteuert.

02/2025 | ID 443345.03

6.1.6.2 Zusatzfunktion Motorpotentiometer

In Applikationen vom Typ Drive Based Center Winder stellt Ihnen die Zusatzfunktion Motorpotentiometer (MOP) die Möglichkeit zur Verfügung, ein elektromechanisches Potenziometer nachzustellen, beispielsweise für die Sollwertvorgabe, für die direkte Ansteuerung der analogen Ausgänge oder für die indirekte Ansteuerung der digitalen Ausgänge.

Funktionsweise

Das Motorpotentiometer kann stufenlos über digitale Auf- und Ab-Signale verstellt werden, um über den Ausgangswert beispielsweise Sollwerte für Bewegungen der Achse vorzugeben (Ausgangswert: G373). Der Ausgangswert kann durch einen maximalen positiven und einen maximalen negativen Wert begrenzt werden (Begrenzung: G362, G363; Grenzwert erreicht: G374). Als Quelle für die Auf- und Ab-Signale können entweder die digitalen Eingänge des Antriebsreglers oder die grafische Programmierung dienen (Quelle: G364, G365). Das Initialisierungssignal hat Priorität vor den Auf- und Ab-Signalen und wird unmittelbar ausgeführt, der Initialisierungswert ist frei definierbar (Quelle: G369; Wert: G366).

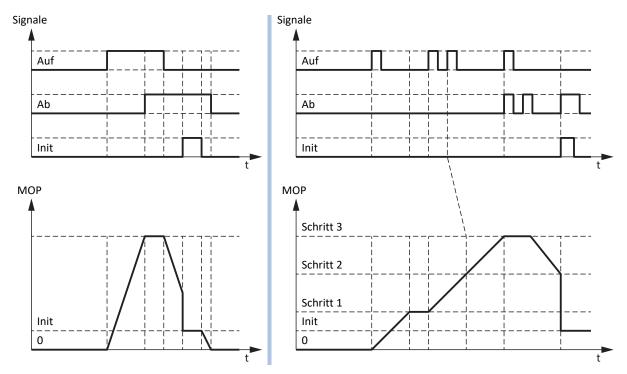


Abb. 24: Motorpotentiometer: lineare und schrittweise Berechnung

Über die Betriebsart des Motorpotentiometers können Sie sowohl die Berechnung des Ausgangswerts als auch das Speicherverhalten beeinflussen (Betriebsart: G368). Der Ausgangswert wird entweder linear oder schrittweise berechnet und kann entweder bei aktiver Freigabe, bis zum nächsten Neustart des Antriebsreglers oder remanent gespeichert werden. Sowohl für die lineare als auch für die schrittweise Berechnung gilt die parametrierte Rampe (Rampe: G361). Bei linearer Berechnung wird der Ausgangswert für die Dauer des eingehenden Auf- oder Ab-Signals verändert. Bei schrittweiser Berechnung wird der Ausgangswert bei Signaleingang um das parametrierte Schrittmaß verändert (Schrittmaß: G367). Wenn ein weiteres Auf- oder Ab-Signal eingeht, während der Sollwert noch nicht erreicht ist, wird dieser um das entsprechende Schrittmaß nachgeführt. Bei gleichzeitig aktivem Auf- und Ab-Signal bleibt der Ausgangswert in beiden Betriebsarten unverändert.

02/2025 | ID 443345.03

6.1.6.2.1 Motorpotentiometer parametrieren

Um die Zusatzfunktion Motorpotentiometer zu parametrieren, gehen Sie grundsätzlich vor wie nachfolgend beschrieben.

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen.
- 3. Aktivieren Sie die Option Motorpotentiometer.
 - ⇒ Die Zusatzfunktion wird aktiviert, die zugehörigen Assistenten und Parameter werden eingeblendet.
- 4. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen > Motorpotentiometer.
- 5. G361 Motorpotentiometer Rampe:

Definieren Sie die Rampe für die Berechnung des Ausgangswerts.

- G362 Motorpotentiometer positiver Maximalwert, G363 Motorpotentiometer negativer Maximalwert: Definieren Sie den maximal zulässigen positiven sowie maximal zulässigen negativen Ausgangswert des Motorpotentiometers.
- 7. G364 Quelle Motorpotentiomenter Auf, G365 Quelle Motorpotentiomenter Ab:

Wählen Sie die Quellen für die Auf- und Ab-Signale des Motorpotentiometers.

- 7.1. Wenn die grafische Programmierung als Quelle dient, wählen Sie 2: Parameter.
- 7.2. Wenn ein digitaler Eingang (direkt oder invertiert) als Quelle dient, wählen Sie den entsprechenden Eingang.
- 8. G368 Motorpotentiometer Betriebsart:

Wählen Sie die gewünschte Betriebsart für das Motorpotentiometer.

- 8.1. Um den Ausgangswert des Motorpotentiometers linear zu berechnen, wählen Sie abhängig vom gewünschten Speicherverhalten 0: Linear, 2: Linear (remanent) oder 4: Linear (Freigabe-abhängig).
- 8.2. Um den Ausgangswert des Motorpotentiometers schrittweise zu berechnen, wählen Sie abhängig vom gewünschten Speicherverhalten 1: Schrittweise, 3: Schrittweise (remanent) oder5: Schrittweise (Freigabe-abhängig).
- 9. G367 Motorpotentiomenter Schrittmaß:

Wenn Sie den Ausgangswert des Motorpotentiometers schrittweise berechnen, definieren Sie das gewünschte Schrittmaß.

- 10. G366 Motorpotentiometer Initialisierungswert:
 - Definieren Sie optional den gewünschten Initialisierungswert.
- 11. G369 Quelle Motorpotentiomenter Initialisierung:

Wählen Sie die Quelle für das Initialisierungssignal des Motorpotentiometers.

6.1.6.2.2 Motorpotentiometer parametrieren: Beispiele

Sie können die Zusatzfunktion Motorpotentiometer beispielsweise nutzen, um Sollwerte für die Geschwindigkeit, den Geschwindigkeits-Override oder Drehmoment/Kraft vorzugeben und so die Achse direkt anzusteuern, z. B. während der Inbetriebnahme, im Lokalbetrieb, bei Ausfall der Steuerung oder wenn die Maschine grundsätzlich keine Steuerung hat. Mithilfe des Motorpotentiometers können Sie auch die analogen Ausgänge direkt oder die digitalen Ausgänge indirekt ansteuern (mithilfe der Zusatzfunktion Komparator REAL32).

Information

In Applikationen des Typs Drive Based Center Winder können Sie das Motorpotentiometer für die Ansteuerung der analogen bzw. digitalen Ausgänge nutzen und für die Sollwertvorgabe in der Betriebsart Kommando, wenn Sie als Bewegungskommando 4: MC_MoveVelocity, 8: MC_MoveSpeed oder 9: MC_TorqueControl nutzen. Bei Verwendung von Bewegungskommando 30: MC_Winder ist die Sollwertvorgabe für die Material-Sollgeschwindigkeit L405 oder den zugehörigen Override L07 mithilfe des Motorpotentiometers nicht vorgesehen.

Analogen Ausgang direkt ansteuern

Um einen analogen Ausgang direkt anzusteuern, können Sie Ausgangswert des Motorpotentiometers als Quelle nutzen.

- 1. Aktivieren Sie die Zusatzfunktion Motorpotentiometer.
- 2. Wählen Sie Assistent Motorpotentiometer.
- 3. Parametrieren Sie das Motorpotentiometer Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie Assistent Analoger Ausgang 1 bzw. Analoger Ausgang 2.
- F40 AO1 Quelle, F50 AO2 Quelle:
 Wählen Sie den Ausgangswert des Motorpotentiometers G373 als Quelle für den gewünschten analogen Ausgang
 AO1 bzw. AO2.
- F41 AO1 Quelle Bezugswert, F51 AO2 Quelle Bezugswert:
 Löschen Sie ggfs. den Bezugswert des gewünschten analogen Ausgangs.
- Der analoge Ausgang wird direkt über das Motorpotentiometer angesteuert.

Sollgeschwindigkeit vorgeben (externe Geschwindigkeit)

Um über das Motorpotentiometer eine Sollgeschwindigkeit vorzugeben, wählen Sie dessen Ausgangswert als Quelle für die externe Geschwindigkeit und nutzen Sie diese als Sollwertquelle für das Bewegungskommando.

- 1. Aktivieren Sie die Zusatzfunktion Motorpotentiometer.
- 2. Wählen Sie Assistent Motorpotentiometer.
- 3. Parametrieren Sie das Motorpotentiometer Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie Assistent Externe Geschwindigkeit: Quelle.
- 5. G461 Quelle externe Geschwindigkeit:

Wählen Sie 5: Indirektes Lesen Parameter G811.

6. G811 Indirektes Lesen externe Geschwindigkeit:

Wählen Sie den Ausgangswert des Motorpotentiometers G373 als Quelle für die externe Geschwindigkeit.

- ⇒ Der Ausgangswert des Motorpotentiometers dient als Quelle für die externe Geschwindigkeit.
- ⇒ Die externe Geschwindigkeit kann via Zugriff auf Parameter G462 als Sollwertvorgabe bereitgestellt werden.
- 7. Für die Betriebsart Kommando parametrieren Sie Bewegungskommando und Sollwertquelle via Parameter J40 und J52.
 - 7.1. J40 Kommando:

Wählen Sie als Bewegungskommando 4: MC MoveVelocity oder 8: MC MoveSpeed.

7.2. J52 Quelle Geschwindigkeit 1:

Wählen Sie 1: Parameter G462 als Quelle für die externe Geschwindigkeit.

⇒ Der Ausgangswert des Motorpotentiometers dient als Sollwertvorgabe, die Umrechnung in eine Sollgeschwindigkeit erfolgt anhand der maximal zulässigen Geschwindigkeit I10.

Sollgeschwindigkeit vorgeben (externe Zusatzgeschwindigkeit)

Um über das Motorpotentiometer die Sollgeschwindigkeit zusätzlich zu regulieren, wählen Sie dessen Ausgangswert als Quelle für die externe Zusatzgeschwindigkeit und nutzen Sie diese als Sollwertquelle für das Bewegungskommando.

- Sie verwenden die Betriebsart Kommando oder die Betriebsart Geschwindigkeit, Drehmoment/Kraft.
- 1. Aktivieren Sie die Zusatzfunktion Motorpotentiometer.
- 2. Wählen Sie Assistent Motorpotentiometer.
- 3. Parametrieren Sie das Motorpotentiometer Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie Assistent Externe Zusatzgeschwindigkeit: Quelle.
- 5. G464 Quelle externe Zusatzgeschwindigkeit:

Wählen Sie 5: Indirektes Lesen Parameter G811.

6. G812 Indirektes Lesen externe Zusatzgeschwindigkeit:

Wählen Sie den Ausgangswert des Motorpotentiometers G373 als Quelle für die externe Zusatzgeschwindigkeit.

- ⇒ Der Ausgangswert des Motorpotentiometers dient als Quelle für die externe Zusatzeschwindigkeit.
- ⇒ Die externe Geschwindigkeit kann via Zugriff auf Parameter G465 als Sollwertvorgabe bereitgestellt werden.
- 7. Für die Betriebsart Kommando parametrieren Sie Bewegungskommando und Sollwertquelle via Parameter J40 und J54.
 - 7.1. J40 Kommando:

Wählen Sie als Bewegungskommando 4: MC_MoveVelocity oder 8: MC_MoveSpeed.

7.2. J54 Quelle Geschwindigkeit 2:

Wählen Sie 1: Parameter G465 als Quelle für die externe Zusatzgeschwindigkeit.

Der Ausgangswert des Motorpotentiometers dient als Sollwertvorgabe, die Umrechnung in eine Sollgeschwindigkeit erfolgt anhand der maximal zulässigen Geschwindigkeit I10.

02/2025 | ID 443345.03

Geschwindigkeits-Override vorgeben

Um über das Motorpotentiometer einen Geschwindigkeits-Override vorzugeben, wählen Sie dessen Ausgangswert als Sollwertquelle und wenden Sie den Geschwindigkeits-Override auf das Bewegungskommando an.

- 1. Aktivieren Sie die Zusatzfunktion Motorpotentiometer.
- 2. Wählen Sie Assistent Motorpotentiometer.
- 3. Parametrieren Sie das Motorpotentiometer Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie Assistent Geschwindigkeits-Override: Quelle.
- 5. G467 Quelle Geschwindigkeits-Override:

Wählen Sie 5: Indirektes Lesen Parameter G813.

6. G813 Indirektes Lesen Geschwindigkeits-Override:

Wählen Sie den Ausgangswert des Motorpotentiometers G373 als Quelle für den Geschwindigkeits-Override.

- ⇒ Der Ausgangswert des Motorpotentiometers dient als Quelle für den Geschwindigkeits-Override.
- ⇒ Der Geschwindigkeits-Override kann via Zugriff auf Parameter G468 als Sollwertvorgabe bereitgestellt werden.
- Für die Betriebsart Kommando parametrieren Sie Bewegungskommando und Sollwertquelle via Parameter J40 und J51.
 - 7.1. J40 Kommando:

Wählen Sie als Bewegungskommando 4: MC_MoveVelocity oder 8: MC_MoveSpeed.

7.2. J51 Quelle Geschwindigkeits-Override:

Wählen Sie 1: Parameter G468 als Quelle für den Geschwindigkeits-Override.

Der Ausgangswert des Motorpotentiometers dient als Sollwertvorgabe für den Geschwindigkeits-Override.

Solldrehmoment/Sollkraft vorgeben

Um über das Motorpotentiometer ein Solldrehmoment/eine Sollkraft vorzugeben, wählen Sie dessen Ausgangswert als Sollwertquelle für das Bewegungskommando.

- 1. Aktivieren Sie die Zusatzfunktion Motorpotentiometer.
- 2. Wählen Sie Assistent Motorpotentiometer.
- 3. Parametrieren Sie das Motorpotentiometer Ihrem Anwendungsfall entsprechend.
- 4. Wählen Sie Assistent Solldrehmoment/-Kraft, Geschwindigkeitsklammerung: Quelle.
- 5. G470 Quelle Soll-Drehmoment/-Kraft:

Wählen Sie 5: Indirektes Lesen Parameter G814.

6. G814 Indirektes Lesen Soll-Drehmoment/Kraft:

Wählen Sie den Ausgangswert des Motorpotentiometers G373 als Quelle für das Solldrehmoment/die Sollkraft.

- ⇒ Der Ausgangswert des Motorpotentiometers dient als Quelle für das Solldrehmoment/die Sollkraft.
- ⇒ Das Solldrehmoment/die Sollkraft kann via Zugriff auf Parameter G471 als Sollwertvorgabe bereitgestellt werden.
- 7. Für die Betriebsart Kommando parametrieren Sie Bewegungskommando und Sollwertquelle via Parameter J40.
 - 7.1. J40 Kommando:

Wählen Sie als Bewegungskommando 9: MC_TorqueControl.

- ⇒ Die parametrierte Sollwertquelle wird automatisch angewandt, es sind keine weiteren Einstellungen notwendig.
- ⇒ Der Ausgangswert des Motorpotentiometers dient als Sollwertvorgabe für das Solldrehmoment/die Sollkraft.

6.1.6.3 Zusatzfunktion feldbusgesteuerter analoger Ausgang

In Applikationen vom Typ Drive Based Center Winder ermöglicht Ihnen die Zusatzfunktion feldbusgesteuerter analoger Ausgang die direkte Kontrolle des jeweiligen analogen Ausgangs über eine Steuerung, um z. B. einfache Aktuatoren wie Pumpen, Lüfter oder Ventile zu bedienen. Über die Zusatzfunktion kann für jeden analogen Ausgang ein individueller Sollwert vorgegeben werden (Freigabe: G303; Sollwert: G306, G309). Bei aktiver Feldbuskommunikation wird der Sollwert über das Prozessdaten-Mapping von der Steuerung geschrieben (G304, G307). Zusätzlich kann ein Fallback-Wert definiert werden, der bei Ausfall der Feldbuskommunikation den Sollwert am jeweiligen analogen Ausgang liefert (G305, G308).

6.1.6.3.1 Feldbusgesteuerten analogen Ausgang parametrieren

Um die Zusatzfunktion zur Ansteuerung der analogen Ausgänge via Feldbus zu parametrieren, gehen Sie grundsätzlich vor wie nachfolgend beschrieben.

Information

Um die Zusatzfunktion zur Ansteuerung der analogen Ausgänge via Feldbus zu nutzen, erweitern Sie das Prozessdaten-Mapping der Applikation abhängig vom verwendeten Feldbus. Weiterführende Informationen zum Prozessdaten-Mapping finden Sie im jeweiligen Feldbushandbuch.

Feldbusgesteuerten analogen Ausgang AO1 parametrieren

- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen.
- 3. Aktivieren Sie die Option Feldbusgesteuerter analoger Ausgang 1.
 - ⇒ Die Zusatzfunktion wird aktiviert, der zugehörige Assistent wird eingeblendet.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen > Feldbusgesteuerter analoger Ausgang 1.
- 5. G305 Sollwert AO1 Fallback:
 - Definieren Sie den Fallback-Wert, der bei Ausfall der Feldbuskommunikation für die Ansteuerung des analogen Ausgangs verwendet wird.
- 6. Wählen Sie Assistent Klemmen > Analoger Ausgang 1.
 - 6.1. F40 AO1 Quelle:
 - Wählen Sie für die Sollwertvorgabe via Feldbus Parameter G306 als Quelle für den analogen Ausgang AO1.
 - 6.2. F41 AO1 Quelle Bezugswert:Löschen Sie ggfs. den Bezugswert des analogen Ausgangs AO1.
- 7. Bei Feldbuskommunikation via CANopen ergänzen Sie Parameter G304 in den Empfangs-Prozessdaten RxPDO A225 A228.
- 8. Bei Feldbuskommunikation via EtherCAT ergänzen Sie Parameter G304 in den Empfangs-Prozessdaten RxPDO A225 A228 und erstellen ggfs. eine neue ESI-Datei für die Steuerung.
- 9. Bei Feldbuskommunikation via PROFINET ergänzen Sie Parameter G304 in den Empfangs-Prozessdaten RxPZD A90 A91.

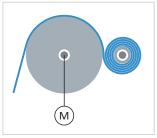
02/2025 | ID 443345.03

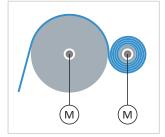
Feldbusgesteuerten analogen Ausgang AO2 parametrieren

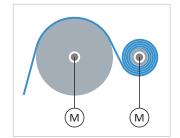
- 1. Markieren Sie im Projektbaum den betreffenden Antriebsregler und klicken Sie im Projektmenü > Bereich Assistent auf die gewünschte projektierte Achse.
- 2. Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen.
- 3. Aktivieren Sie die Option Feldbusgesteuerter analoger Ausgang 2.
 - ⇒ Die Zusatzfunktion wird aktiviert, der zugehörige Assistent wird eingeblendet.
- Wählen Sie Assistent Applikation Drive Based Center Winder > Zusatzfunktionen > Feldbusgesteuerter analoger Ausgang 2.
- 5. G308 Sollwert AO2 Fallback:

Definieren Sie den Fallback-Wert, der bei Ausfall der Feldbuskommunikation für die Ansteuerung des analogen Ausgangs verwendet wird.

- 6. Wählen Sie Assistent Klemmen > Analoger Ausgang 2.
 - 6.1. F50 AO2 Quelle:


Wählen Sie für die Sollwertvorgabe via Feldbus Parameter G309 als Quelle für den analogen Ausgang AO2.


- 6.2. F51 AO2 Quelle Bezugswert:Löschen Sie ggfs. den Bezugswert des analogen Ausgangs AO2.
- 7. Bei Feldbuskommunikation via CANopen ergänzen Sie Parameter G307 in den Empfangs-Prozessdaten RxPDO A225 A228.
- 8. Bei Feldbuskommunikation via EtherCAT ergänzen Sie Parameter G307 in den Empfangs-Prozessdaten RxPDO A225 A228 und erstellen ggfs. eine neue ESI-Datei für die Steuerung.
- 9. Bei Feldbuskommunikation via PROFINET ergänzen Sie Parameter G304 in den Empfangs-Prozessdaten RxPZD A90 A91.


02/2025 | ID 443345.03

6.2 Zentralwickler – Konzept

Eine Anlage, die das Aufwickeln, Abwickeln oder Umwickeln von Materialien wie Kunststoff, Draht, Textilien oder Papier ermöglicht, bezeichnet man als Wickler. Für die Realisierung von Wickelanwendungen gibt es verschiedene Wickelverfahren. Beim Zentralwickler wird der Wickel durch eine zentrale Welle angetrieben, auf der sich eine Wickelhülse befindet, auf die Material aufgewickelt bzw. von der Material abgewickelt wird.

Kontaktwickler

Zentralwickler (Kontaktwickler)

Zentralwickler (Spaltwickler)

Abb. 25: Zentralwickler: Arten

Beim Aufwickeln bzw. Abwickeln von Material verändert sich der Durchmesser des Wickels. Der Wickeldurchmesser muss durch einen Sensor gemessen oder vom Antrieb berechnet werden, um die Materialzugkraft, die Materialgeschwindigkeit oder die Tänzerposition konstant zu halten. Wenn kein Sensor verwendet wird, berechnet der Antriebsregler den Wickeldurchmesser aus der Materialgeschwindigkeit. Welche Bewegungsgrößen relevant sind, hängt von der gewählten Wickelmethode (Steuer- oder Regelverfahren) des Zentralwicklers ab.

6 | Mehr zu Drive Based Center Winder?

6.2.1 Wickelmethoden

Die Wickelmethode ist das Steuer- oder Regelverfahren des Zentralwicklers, das die Berechnung der Hauptsollwerte beeinflusst, wobei der Wickeldurchmesser von zentraler Bedeutung ist. Je nach Wickelmethode ist die Parametrierung unterschiedlicher Bewegungsgrößen und ggfs. des PID-Reglers erforderlich.

	Geschwindigkeits- steuerung	Geschwindigkeits- regelung	Zugkraftsteuerung	Zugkraftregelung mit Drehmomentkorrektur	Zugkraftregelung mit Geschwindigkeits- korrektur	Tänzerpositionsregelung mit Geschwindigkeits- korrektur
Durchmesser	✓	✓	✓	✓	✓	✓
Material- Sollgeschwindigkeit	✓	✓	✓	✓	✓	✓
Material- Istgeschwindigkeit	(√)	✓	(✓)	(✓)	(✓)	(✓)
Material-Sollzugkraft	_	_	✓	✓	✓	_
Material-Istzugkraft	_	_	_	✓	✓	_
Tänzerposition	_	_	_	_	_	✓
PID-Regler	_	1	_	✓	✓	✓
(✓): Erforderlich bei L20	= 0: Durchmesser-Rechner					

Tab. 4: Wickelmethoden: erforderliche Bewegungsgrößen

Abhängig von der Zielsetzung Ihres Anwendungsfalls stehen Ihnen in der Applikation Drive Based Center Winder die nachfolgenden Wickelmethoden zur Verfügung.

6.2.1.1 Geschwindigkeitssteuerung, Geschwindigkeitsregelung

Bei Geschwindigkeitssteuerung und Geschwindigkeitsregelung des Zentralwicklers wird als zentrale Bewegungsgröße die Material-Sollgeschwindigkeit vorgegeben. Für die Geschwindigkeitsregelung muss die Material-Istgeschwindigkeit bekannt sein, während die Geschwindigkeitssteuerung auch ohne zusätzliche Messsysteme wie Sensoren eingesetzt werden kann.

Diese beiden Wickelmethoden eignen sich besonders für einfache Anwendungen, bei denen es nicht auf die Genauigkeit der Materialzugkraft bzw. ein gleichmäßiges Wickelergebnis, sondern auf die Materialgeschwindigkeit ankommt (z. B. das Aufrollen von Kranseil).

Geschwindigkeitssteuerung

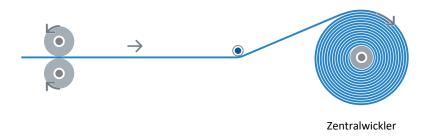


Abb. 26: Aufbau: Zentralwickler mit Geschwindigkeitssteuerung

Bei der Geschwindigkeitssteuerung folgt die Achse der vorgegebenen Material-Sollgeschwindigkeit, die Parametrierung des PID-Reglers entfällt grundsätzlich. Die Parametrierung der Material-Istgeschwindigkeit ist nur dann erforderlich, wenn der Wickeldurchmesser berechnet statt gemessen wird.

Wenn die Material-Istgeschwindigkeit für die Berechnung des Wickeldurchmessers bekannt sein muss, kann anstelle der Geschwindigkeitssteuerung auch die Geschwindigkeitsregelung verwendet und der PID-Regler parametriert werden, um ein gleichmäßigeres Wickelergebnis zu erreichen.

Geschwindigkeitsregelung

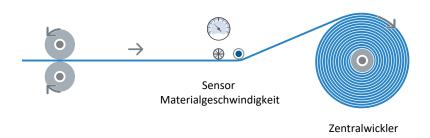


Abb. 27: Aufbau: Zentralwickler mit Geschwindigkeitsregelung

Bei der Geschwindigkeitsregelung wird die Material-Istgeschwindigkeit auf die vorgegebene Material-Sollgeschwindigkeit geregelt, indem die Sollgeschwindigkeit des Motors über die Stellgröße des PID-Reglers korrigiert wird.

Die Materialgeschwindigkeiten werden mithilfe von L358 am Eingang des PID-Reglers skaliert (Einheiten: mm/s \rightarrow %), bevor sie auf den Sollwert L360 und den Istwert L361 des PID-Reglers geschrieben werden. Die Stellgröße L366 des PID-Reglers wird mit L358 skaliert (Einheit: % \rightarrow mm/s), bevor sie auf die Material-Sollgeschwindigkeit aufaddiert wird.

Sollgeschwindigkeit

Die Sollgeschwindigkeit L102 der Achse wird anhand der vorgegebenen Material-Sollgeschwindigkeit L420 und des Wickeldurchmessers L29 berechnet und mit der Zeitkonstante in L104 gefiltert. Bei Geschwindigkeitsregelung wird bei der Berechnung von L102 zusätzlich die PID-Regler-Stellgröße L366 berücksichtigt.

Solldrehmoment

Das Solldrehmoment L103 der Achse wird für die Drehmomentvorsteuerung des Zentralwicklers verwendet, um die Reibung und das Massenträgheitsmoment der Achse zu kompensieren. Das maximal zulässige Solldrehmoment wird nicht durch die Applikation definiert (D232, D233), sondern durch das Achsmodell (C03, C05).

6.2.1.2 Zugkraftsteuerung, Zugkraftregelung

Bei Zugkraftsteuerung und Zugkraftregelung des Zentralwicklers werden als zentrale Bewegungsgröße die Material-Sollzugkraft und die Material-Sollgeschwindigkeit vorgegeben. Für die Zugkraftregelung muss die Material-Istzugkraft bekannt sein, während die Zugkraftsteuerung auch ohne zusätzliche Messsysteme wie Sensoren eingesetzt werden kann.

Diese Wickelmethoden eignen sich besonders für Anwendungen, bei denen es nicht auf Geschwindigkeit, sondern vor allem auf den Materialzug bzw. ein gleichmäßiges Wickelergebnis ankommt (z. B. Aufwickeln von Folie). Für die Zugkraftregelung muss lediglich die Material-Istzugkraft bekannt sein, wohingegen die Zugkraftsteuerung auch ohne zusätzliche Messsysteme wie Sensoren eingesetzt werden kann.

Sowohl bei Zugkraftsteuerung als auch bei Zugkraftregelung kann die Materialzugkraft zusätzlich modifiziert werden, beispielsweise mithilfe eines durchmesserabhängigen Overrides (Wickelhärtenkennlinie).

Zugkraftsteuerung

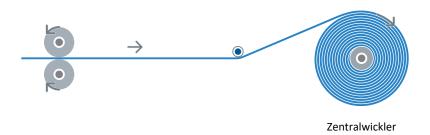


Abb. 28: Aufbau: Zentralwickler mit Zugkraftsteuerung

Bei Zugkraftsteuerung des Zentralwicklers folgt die Achse der vorgegebenen Material-Sollzugkraft, die Parametrierung des PID-Reglers entfällt grundsätzlich. Die Parametrierung der Material-Istgeschwindigkeit ist nur dann erforderlich, wenn der Wickeldurchmesser berechnet statt gemessen wird.

Um ein gleichmäßiges Wickelergebnis zu ermöglichen, ist außerdem die Kompensation der statischen sowie dynamischen Reibung der Achse essenziell (L310). Die Kompensation der konstanten sowie variablen Massenträgheit der Achse ist optional (L300).

Zugkraftregelung

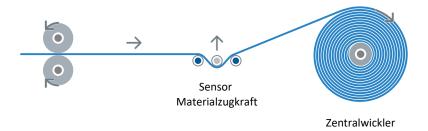


Abb. 29: Aufbau: Zentralwickler mit Zugkraftregelung

Bei Zugkraftregelung des Zentralwicklers wird die Material-Istzugkraft auf die vorgegebene Material-Sollzugkraft geregelt. Um die Material-Istzugkraft an die Material-Sollzugkraft anzupassen, korrigiert die Regelung entweder das Solldrehmoment der Achse (Drehmomentkorrektur) oder die Sollgeschwindigkeit der Achse (Geschwindigkeitskorrektur).

Bei Zugkraftregelung werden die Materialzugkräfte mithilfe von L357 am Eingang des PID-Reglers skaliert (Einheiten: N \rightarrow %), bevor sie auf den Sollwert L360 und den Istwert L361 des PID-Reglers geschrieben werden. Die Stellgröße L366 des PID-Reglers wird abhängig von der gewählten Wickelmethode mit L357 (Einheit: % \rightarrow N) bzw. L358 (Einheit: % \rightarrow mm/s) skaliert, bevor sie zur Material-Sollzugkraft (Drehmomentkorrektur) bzw. zur Material-Sollgeschwindigkeit (Geschwindigkeitskorrektur) addiert wird.

Sollgeschwindigkeit

Die Sollgeschwindigkeit L102 der Achse wird anhand der vorgegebenen Material-Sollgeschwindigkeit L420 und des Wickeldurchmessers L29 berechnet und mit der Zeitkonstante in L104 gefiltert. Bei Zugkraftregelung mit Geschwindigkeitskorrektur wird bei der Berechnung von L102 zusätzlich die PID-Regler-Stellgröße L366 berücksichtigt.

Bei Zugkraftsteuerung sowie Zugkraftregelung mit Drehmomentkorrektur muss die Material-Sollgeschwindigkeit L420 mithilfe eines Geschwindigkeits-Overrides L07 überhöht werden, um eine Differenz zwischen Ist- und Sollgeschwindigkeit zu schaffen, sodass die Achse in Zugkraftregelung bleibt.

Solldrehmoment

Bei Zugkraftsteuerung sowie Zugkraftregelung mit Drehmomentkorrektur wird das Solldrehmoment L103 der Achse anhand der vorgegebenen Material-Sollzugkraft L510 und des Wickeldurchmessers L29 berechnet und mit der Zeitkonstante in L495 gefiltert. Bei Zugkraftregelung mit Drehmomentkorrektur wird bei der Berechnung von L103 zusätzlich die PID-Regler-Stellgröße L366 berücksichtigt.

Bei Zugkraftsteuerung ist die Kompensation von Reibung und Massenträgheit L300 und L310 essenziell für ein gleichmäßiges Wickelergebnis, bei Zugkraftregelung mit Drehmomentkorrektur dient die Kompensation primär der Entlastung des PID-Reglers. In beiden Wickelmethoden wird das maximal zulässige Solldrehmoment über die Applikation definiert (D232, D233).

Bei Zugkraftregelung mit Geschwindigkeitskorrektur wird das Solldrehmoment L103 der Achse lediglich für die Drehmomentvorsteuerung des Zentralwicklers verwendet, um die Reibung und das Massenträgheitsmoment der Achse zu kompensieren. Das maximal zulässige Solldrehmoment wird nicht durch die Applikation definiert (D232, D233), sondern durch das Achsmodell (C03, C05).

02/2025 | 1D 443345.03

6.2.1.3 Tänzerpositionsregelung

Bei Tänzerpositionsregelung des Zentralwicklers werden als zentrale Bewegungsgrößen die Tänzer-Sollposition und die Material-Sollgeschwindigkeit vorgegeben. Für die Tänzerpositionsregelung muss die Tänzer-Istposition bekannt sein.

Diese Wickelmethode eignet sich besonders für Anwendungen, bei denen es einen Tänzer gibt, der für einen konstanten Materialzug sorgt und durch den Zentralwickler an der gleichen Position gehalten wird. Die Tänzer-Istposition wird durch einen Encoder oder durch ein Potenziometer gemessen und mithilfe des PID-Reglers auf die vorgegebene Tänzer-Sollposition geregelt.

Tänzerpositionsregelung

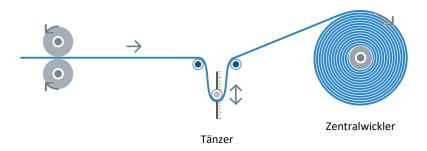


Abb. 30: Aufbau: Zentralwickler mit Tänzerpositionsregelung

Bei der Tänzerpositionsregelung wird die Tänzer-Istposition L96 auf die vorgegebene Tänzer-Sollposition L95 geregelt, indem die Sollgeschwindigkeit des Motors über die Stellgröße des PID-Reglers korrigiert wird.

Die Tänzerpositionen werden mithilfe von L359 am Eingang des PID-Reglers skaliert (Einheit: $mm \rightarrow \%$), bevor sie auf den Sollwert L360 und den Istwert L361 des PID-Reglers geschrieben werden. Die Stellgröße L366 des PID-Reglers wird mit L358 skaliert (Einheit: $\% \rightarrow mm/s$), bevor sie zur Geschwindigkeitskorrektur auf die Material-Sollgeschwindigkeit aufaddiert wird.

Die Parametrierung der Material-Istgeschwindigkeit ist nur dann erforderlich, wenn der Wickeldurchmesser berechnet statt gemessen wird.

Sollgeschwindigkeit

Die Sollgeschwindigkeit L102 der Achse wird anhand der vorgegebenen Material-Sollgeschwindigkeit L420 und des Wickeldurchmessers L29 berechnet und mit der Zeitkonstante in L104 gefiltert. Bei der Berechnung von L102 wird zusätzlich die PID-Regler-Stellgröße L366 berücksichtigt.

Solldrehmoment

Das Solldrehmoment L103 der Achse wird für die Drehmomentvorsteuerung des Zentralwicklers verwendet, um die Reibung und das Massenträgheitsmoment der Achse zu kompensieren. Das maximal zulässige Solldrehmoment wird nicht durch die Applikation definiert (D232, D233), sondern durch das Achsmodell (C03, C05).

6.2.2 Bewegungsgrößen

Für die Parametrierung von Applikationen des Typs Drive Based Center Winder sind, je nach Anwendungsfall, vor allem die Materialgeschwindigkeit, die Materialzugkraft und ggfs. die Tänzerposition von Bedeutung. Welche der Bewegungsgrößen für Ihren Anwendungsfall relevant sind, hängt von der gewählten Wickelmethode ab.

6.2.2.1 Materialzugkraft

Die Materialzugkraft ist bei der Zugkraftsteuerung sowie Zugkraftregelung des Zentralwicklers von zentraler Bedeutung (LOO = 1: Zugkraftsteuerung, 2: Zugkraftregelung, Drehmomentkorrektur, 3: Zugkraftregelung, Geschwindigkeitskorrektur).

Materialzugkraft: Quelle

Als Quelle für die Material-Sollzugkraft kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang oder ein Feldbus dienen (Quelle: L498). Die Material-Sollzugkraft wird mit der in L495 definierten Zeitkonstante gefiltert, der gefilterte Wert wird in L499 angezeigt.

Als Quelle für die Material-Istzugkraft für die Zugkraftregelung kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang oder ein Feldbus als Quelle dienen (Quelle: L492). Die gemessene Material-Istzugkraft wird mit der in L489 definierten Zeitkonstante gefiltert, der gefilterte Wert wird in L493 angezeigt.

Wenn ein analoger Eingang als Quelle für die Material-Istzugkraft oder für die Material-Sollzugkraft dient, erfolgt die Skalierung der Werte am analogen Eingang Al1 – Al3 über die maximal zulässige Material-Sollzugkraft L497: 0 % am analogen Eingang entsprechen 0 N und 100 % entsprechen L497.

Material-Istzugkraft: Berechnung

Für die Zugkraftregelung muss die Material-Istzugkraft zwingend gemessen und von einer externen Quelle vorgegeben werden, in allen anderen Wickelmethoden kann die Material-Istzugkraft als rein informativer Anzeigewert berechnet werden.

Wenn keine externe Quelle definiert wird (L492 = 0: 0 (Null)), wird die Material-Istzugkraft unter Berücksichtigung der Drehmomente für die Kompensation der Massenträgheit sowie der Reibung der Achse aus dem Drehmoment des Getriebemotors und dem Wickeldurchmesser berechnet (Drehmoment: E90; Durchmesser: L29). Die berechnete Material-Istzugkraft wird mit einer Zeitkonstanten von 100 ms gefiltert, der gefilterte Wert wird in L481 angezeigt.

Bei der Berechnung der Material-Istzugkraft wird das Istdrehmoment des Getriebemotors mit dem lastseitigen Bezugswert C09 skaliert (Einheit: $\% \to \text{Nm}$) und anschließend drehrichtungsabhängig mit den Drehmomente für die Kompensation der Reibung und Massenträgheit der Achse verrechnet (L310, L300). Sofern das Material unter Spannung steht, ist das Ergebnis ein positiver Drehmomentwert, der anhand des aktuellen Wickeldurchmessers in eine lineare Material-Istzugkraft umgerechnet wird.

Information

Die vom Antriebsregler berechnete Material-Istzugkraft dient lediglich als Anzeigewert und hat rein informativen Charakter. Die berechnete Material-Istzugkraft kann nicht für die Zugkraftregelung verwendet werden.

Material-Sollzugkraft: Modus

Die Material-Sollzugkraft kann in Abhängigkeit vom aktuellen Wickeldurchmesser modifiziert werden, die Auswahl ist entweder direkt über die DriveControlSuite oder mithilfe des Steuerworts der Applikation via Feldbus möglich (Modus: L500; Steuerwort: L150, Bit 5 – 6).

6.2.2.2 Materialgeschwindigkeit

Die Materialgeschwindigkeit ist in sämtlichen Wickelmethoden von Bedeutung, da anhand der Material-Sollgeschwindigkeit und des Wickeldurchmessers die Sollgeschwindigkeit der Achse berechnet wird. Die Material-Istgeschwindigkeit ist bei Geschwindigkeitsregelung des Zentralwicklers sowie ggfs. für die Berechnung des Wickeldurchmessers erforderlich (L00 = 5: Geschwindigkeitsregelung; L20 = 0: Durchmesser-Rechner).

Bei L20 = 0: Durchmesser-Rechner muss die Material-Istgeschwindigkeit der tatsächlichen Geschwindigkeit des Materials direkt am Wickel entsprechen, damit der Wickeldurchmesser und folglich das Solldrehmoment der Achse für ein gleichmäßiges Wickelergebnis exakt berechnet werden können.

Bei LOO = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur kann z. B. die Material-Istgeschwindigkeit vor dem Tänzer von der Material-Istgeschwindigkeit hinter dem Tänzer abweichen.

Materialgeschwindigkeit: Quelle

Als Quelle für die Material-Sollgeschwindigkeit kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang oder ein Feldbus dienen (Quelle: L400). Die Material-Sollgeschwindigkeit wird mit der in L406 definierten Zeitkonstante gefiltert, der gefilterte Wert wird in L420 angezeigt. Das Vorzeichen der Material-Sollgeschwindigkeit L420 definiert die Wickelrichtung.

Als Quelle für die Material-Istgeschwindigkeit kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang, ein Feldbus, die Material-Sollgeschwindigkeit oder die Istgeschwindigkeit eines Master-Encoders dienen (Quelle: L452). Die Material-Istgeschwindigkeit wird mit der in L456 definierten Zeitkonstante gefiltert, der gefilterte Wert wird in L454 angezeigt.

Wenn ein analoger Eingang als Quelle für die Material-Istgeschwindigkeit oder für die Material-Sollgeschwindigkeit dient, erfolgt die Skalierung der Werte am analogen Eingang Al1 – Al3 über die maximal zulässige Materialgeschwindigkeit L410: 0 % am analogen Eingang entsprechen 0 mm/s und 100 % entsprechen L410.

Material-Istgeschwindigkeit invertieren

Bei L00 = 5: Geschwindigkeitsregelung müssen die Material-Istgeschwindigkeit L454 und die Material-Sollgeschwindigkeit L452 dasselbe Vorzeichen haben, d. h. beim Aufwickeln müssen sowohl Material-Sollgeschwindigkeit als auch Material-Istgeschwindigkeit positiv sein, beim Abwickeln müssen beide Materialgeschwindigkeiten negativ sein. Das Vorzeichen der Material-Istgeschwindigkeit kann mithilfe von L458 invertiert werden.

6.2.2.3 Tänzerposition

Die Tänzerposition ist ausschließlich bei der Tänzerpositionsregelung des Zentralwicklers von Bedeutung (L00 = 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur).

Tänzerposition: Quelle

Die Tänzer-Sollposition kann direkt über die DriveControlSuite oder via Feldbus vorgegeben werden (Quelle: L95).

Als Quelle für die Tänzer-Istposition kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang oder ein Feldbus dienen (Quelle: L90). Die Tänzer-Istposition wird mit der in L93 definierten Zeitkonstante gefiltert, der gefilterte Wert wird abhängig von der gewählten Quelle in L94 oder L96 angezeigt.

Wenn ein analoger Eingang als Quelle für die Tänzer-Istposition dient, erfolgt die Skalierung der Werte am analogen Eingang Al1 – Al3 über die maximal zulässige Tänzer-Sollposition L91[0] – [1] und L92[0] – [1] (Einheit: $\% \rightarrow$ mm). In L91 wird der Wertebereich am analogen Eingang definiert, der von einer Spannung in % entsprechend des definierten Wertebereichs in L92 in eine Position in mm umgerechnet werden soll.

Wenn Sie die Materialriss-Überwachung verwenden möchten, muss der allgemeine Wertebereich der Tänzer-Istposition (L92[0] – L92[1]) größer sein als der zulässige Wertebereich der Tänzer-Sollposition.

6.2.3 Wickeldurchmesser

Der Wickeldurchmesser L29 ist ein essenzieller Bestandteil der Applikation Drive Based Center Winder, da ausschließlich über den Durchmesser die vorgegebenen oder ermittelten linearen Bewegungsgrößen in rotatorische Bewegungsgrößen umgewandelt werden können.

Quelle für den Wickeldurchmesser kann entweder ein Sensor oder der Durchmesser-Rechner der Applikation Drive Based Center Winder sein (Quelle: L20).

Als Quelle für den Durchmesser-Sensor kann, je nach Baureihe des Antriebsreglers, ein analoger Eingang oder ein Feldbus dienen (Quelle: L21).

Wenn der Durchmesser-Rechner als Quelle dient, wird der Wickeldurchmesser anhand der Material-Istgeschwindigkeit L454 und der Istgeschwindigkeit des Motors I88 berechnet.

Der Wickeldurchmesser wird durch Parameter LO3 und LO4 auf den minimal bzw. maximal zulässigen Wickeldurchmesser begrenzt, der üblicherweise der leeren Wickelhülse bzw. dem vollen Wickel entspricht.

Durchmesser-Rechner: Bewegung fortsetzen

Um den Wickeldurchmesser berechnen zu können, darf die minimal zulässige Geschwindigkeit LO2 des Durchmesser-Rechners nicht unterschritten werden. Wenn es z. B. durch Anhalten der Achse oder durch Ändern der Wickelrichtung (Aufwickeln ↔ Abwickeln) zum Unterschreiten von LO2 kommt, gibt der Durchmesser-Rechner den minimal zulässigen Wickeldurchmesser LO3 aus.

Beim Fortsetzen des Wickelns liefert der Durchmesser-Rechner anfangs ggfs. unruhige Werte, wenn er beim Überschreiten der minimal zulässigen Geschwindigkeit LO2 vom minimal zulässigen Wickeldurchmesser LO3 zurück auf den tatsächlichen Durchmesser ansteigt. Um die korrekte Berechnung des Wickeldurchmessers beim Fortsetzen der Bewegung aus dem Stillstand zu ermöglichen, können Sie entweder den Durchmesser halten oder mit einem Startdurchmesser arbeiten.

Durchmesser halten

Wenn Sie vor dem Anhalten der Achse den zuletzt korrekt berechneten Wickeldurchmesser halten, können Sie diesen nach dem Fortsetzen der Bewegung aus dem Stillstand und bei Verwendung des Durchmesser-Rechners übergangsweise für ein gleichmäßigeres Wickelergebnis verwenden. Voraussetzung ist, dass der Durchmesser während des Stillstands der Achse nicht manuell stark verändert wird, z. B. durch das Tauschen des Wickels durch eine leere Wickelhülse.

Als Quelle für die Funktion zum Halten des Durchmessers kann, je nach Baureihe des Antriebsreglers, ein digitaler Eingang oder ein Feldbus dienen (Quelle: L28).

Startdurchmesser

Mithilfe des Startdurchmessers L31 können Sie der Achse beim Bewegungsstart einen geeigneten Wickeldurchmesser vorgeben, z. B. nach Start der Applikation oder beim Fortsetzen der Bewegung aus dem Stillstand, auch wenn zwischenzeitlich der volle Wickel durch eine leere Wickelhülse getauscht wurde oder umgekehrt.

Beim Abwickeln mit Durchmesser-Rechner ist der Startdurchmesser besonders wichtig, da andernfalls bei Bewegungsstart prinzipbedingt der minimal zulässigen Wickeldurchmesser LO3 verwendet wird, bis die minimal zulsässige Geschwindigkeit LO2 des Durchmesser-Rechners überschritten wird.

Als Quelle für das Aktivieren des Startdurchmessers kann, je nach Baureihe des Antriebsreglers, ein digitaler Eingang oder ein Feldbus dienen (Quelle: L30).

Durchmesseränderungsbegrenzung

Die Durchmesseränderungsbegrenzung kann entweder über die digitalen Eingänge des Antriebsreglers, über die DriveControlSuite selbst oder mithilfe des Steuerworts der Applikation via Feldbus möglich (Quelle: L35; Steuerwort: L150, Bit 3).

Die Begrenzung der Durchmesseränderung optimiert das Wickelergebnis, indem sie eine Änderung des Wickeldurchmessers nur in Wickelrichtung zulässt, d. h. beim Aufwickeln darf der Durchmesser nur ansteigen und beim Abwickeln nur abnehmen. Anstelle von Durchmesseränderungen in die unzulässige Richtung wird der Durchmesser gehalten. Durchmesseränderungen entgegen der Wickelrichtung können z. B. durch Messfehler beim Erfassen der Istwerte für den Durchmesser-Rechner oder den Durchmesser-Sensor auftreten (Quelle: L20).

Um Durchmessersprünge beim Aufwickeln oder Abwickeln in der zulässigen Wickelrichtung zu verringern, kann zusätzlich eine maximal zulässige Änderung des Wickeldurchmessers pro Sekunde definiert werden (Durchmesseränderung maximal: L36).

Die Durchmesseränderungsbegrenzung kann für die Dauer des Freigabe-Aus pausiert werden, z. B. um einen vollen Wickel bei Freigabe-Aus durch eine leere Wickelhülse zu ersetzen (oder umgekehrt), ohne die Durchmesseränderungsbegrenzung vorher manuell deaktivieren und anschließend reaktivieren zu müssen (Parameter: L37). Bei nachfolgendem Freigabe-Ein wird die Durchmesseränderungsbegrenzung automatisch mit dem aktuellen Wickeldurchmesser fortgesetzt.

Wenn sich die Wickelrichtung ändert (Vorzeichenwechsel L420), der Startdurchmesser aktiviert wird (L30 ≠ 0: Inaktiv) oder die Durchmesseränderungsbegrenzung deaktiviert wird (L35 = 0: Inaktiv), werden die Korrekturen am Wickeldurchmesser L29 automatisch zurückgesetzt.

6.2.4 Wickelrichtung

Die Wickelrichtung ergibt sich aus dem Vorzeichen der Material-Sollgeschwindigkeit L420. Bei positiver Material-Sollgeschwindigkeit wickelt der Zentralwickler auf (zunehmender Wickeldurchmesser), bei negativer Material-Sollgeschwindigkeit ab (abnehmender Wickeldurchmesser).

Die Interpretationsrichtung zwischen der Wickelrichtung und der Motorbewegung, d. h. die Relation zwischen den Vorzeichen der Material-Sollgeschwindigkeit L420 und der Sollgeschwindigkeit des Motors L102, wird durch die Polarität des Zentralwicklers L10 definiert.

Die DriveControlSuite berücksichtigt sowohl die Wickelrichtung als auch die Zentralwickler-Polarität bei der Visualisierung der gewählten Wickelmethode (Assistent: Zentralwickler).

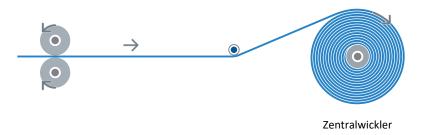


Abb. 31: Zentralwickler: Aufwickeln positiv (Wickeln von oben)

Merkmal	Parameter	Bedeutung
Wickelrichtung	L420 = positiv	Aufwickeln
Zentralwickler-Polarität	L10 = 0: Positiv	Vorzeichen der Sollgeschwindigkeiten sind gleich (L102 = positiv)

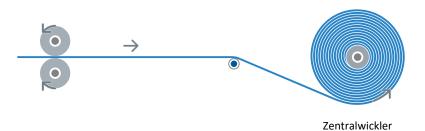


Abb. 32: Zentralwickler: Aufwickeln negativ (Wickeln von unten)

Merkmal	Parameter	Bedeutung
Wickelrichtung	L420 = positiv	Aufwickeln
Zentralwickler-Polarität	L10 = 1: Negativ	Vorzeichen der Sollgeschwindigkeiten sind invertiert (L102 = negativ)

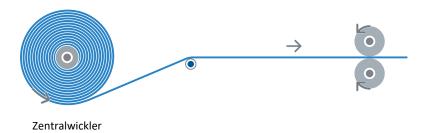


Abb. 33: Zentralwickler: Abwickeln positiv

Merkmal	Parameter	Bedeutung
Wickelrichtung	L420 = negativ	Abwickeln
Zentralwickler-Polarität	L10 = 0: Positiv	Vorzeichen der Sollgeschwindigkeiten sind gleich (L102 = negativ)

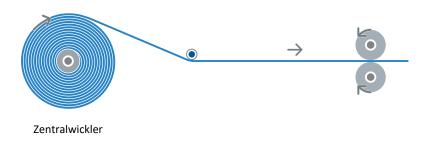


Abb. 34: Zentralwickler: Abwickeln negativ

Merkmal	Parameter	Bedeutung
Wickelrichtung	L420 = negativ	Abwickeln
Zentralwickler-Polarität	L10 = 1: Negativ	Vorzeichen der Sollgeschwindigkeiten sind invertiert (L102 = positiv)

6.2.5 Kompensation von Reibung und Massenträgheit

Um bei L00 = 1: Zugkraftsteuerung ein gleichmäßiges Wickelergebnis zu ermöglichen, müssen die statische und die dynamische Reibung der Achse ermittelt und kompensiert werden. Bei allen anderen Wickelmethoden ist die Kompensation der Reibung optional. Bei L00 = 2: Zugkraftregelung, Drehmomentkorrektur kann die Kompensation der Reibung den PID-Regler entlasten. Die Kompensation der konstanten und variablen Massenträgheit ist für alle Wickelmethoden optional und ermöglicht eine konstante Materialzugkraft beim Beschleunigen der Achse.

Um die Reibung und Massenträgheit der Achse zu kompensieren, gehen Sie vor wie in Reibung und Massenträgheit kompensieren [▶ 51] beschrieben.

Statisches und dynamisches Reibmoment

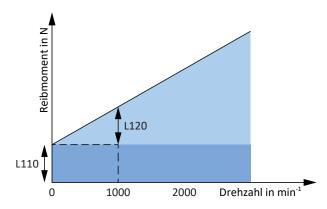


Abb. 35: Zentralwickler: Reibmoment der Achse

Das Reibmoment M_R entspricht dem Drehmoment, das der Antrieb erbringen muss, um die Reibung der Achse zu kompensieren. Das statische Reibmoment M_{Rstat} muss der Antrieb erbringen, um die Achse vom Stillstand in Bewegung zu versetzen und das dynamische Reibmoment M_{Rdyn} muss der Antrieb erbringen, um die Achse in Bewegung zu halten (Reibmoment statisch: L110; Reibmoment dynamisch: L120).

Konstantes und variables Massenträgheitsmoment

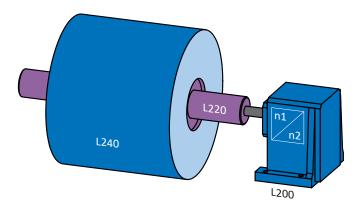


Abb. 36: Zentralwickler: Massenträgheitsmoment der Achse

Aus dem Massenträgheitsmoment J und der Winkelbeschleunigung α ergibt sich das Drehmoment, das der Antrieb erbringen muss, um die Achse in Drehbewegung zu versetzen.

Das konstante Massenträgheitsmoment ergibt sich aus der Summe der Massenträgheitsmomente von Motor, Getriebe und Welle samt Wickelhülse (Motor: B62; Getriebe: L200; Welle + Wickelhülse: L220).

Das variable Massenträgheitsmoment ergibt sich aus dem Massenträgheitsmoment des Materials in Abhängigkeit vom aktuellen Wickeldurchmesser (Wickel: L240; Quelle Durchmesser: L20).

Aus dem konstanten und dem variablen Massenträgheitsmoment ergibt sich das Massenträgheitsmoment der Achse (Anzeige: L320).

6.2.6 Materialriss-Überwachung

Die Applikation Drive Based Center Winder ermöglicht Ihnen die Überwachung des Materials auf einen Abriss oder Losen anhand eines Sensors, eines Algorithmus oder einer Kombination beider Möglichkeiten (Quelle: L381). Wenn ein Materialriss oder eine Lose erkannt wird, wird im Statuswort der Applikation das entsprechende Bit gesetzt (Signal: L904; Statuswort: L155, Bit 7). Zusätzlich kann bei einem Materialriss Applikations-Ereignis 0 ausgelöst werden, das entweder als Meldung, Warnung oder Störung ausgewertet werden kann (Level: U100).

Der Algorithmus erkennt einen Materialriss unter folgenden Bedingungen (Voraussetzung: L381 = 2: Algorithmus, 3: Algorithmus + Sensor):

Wickelmethode	Bedingung für L904 = 1: Aktiv	
0: Geschwindigkeitssteuerung, 5: Geschwindigkeitsregelung	_	
1: Zugkraftsteuerung	Abweichung ≥ 5 % zwischen Istdrehmoment und Solldrehmoment der Achse (E90, L103) und Bewegungsprofil des Motion-Kerns hat die Sollgeschwindigkeit erreicht (I183 = 1: Aktiv)	
2: Zugkraftregelung, Drehmomentkorrektur, 3: Zugkraftregelung, Geschwindigkeitskorrektur	Material-Istzugkraft ist kleiner als minimal zulässige Materialzugkraft (L493 < L382)	
4: Tänzerpositionsregelung, Geschwindigkeitskorrektur	Tänzer-Istposition ist kleiner als minimal zulässige Tänzerposition (L96 < L97)	

Tab. 5: Materialriss-Überwachung: Algorithmus

Um die Materialriss-Überwachung zu parametrieren, gehen Sie vor wie in <u>Materialriss-Überwachung parametrieren [▶ 63]</u> beschrieben.

6.2.7 PID-Regler

In der Applikation Drive Based Center Winder ist der PID-Regler sowohl in der Betriebsart Zentralwickler als auch in der Betriebsart Kommando für die nachfolgenden Wickelmethoden verfügbar (Voraussetzung: J50 = 30: MC_Winder).

- 2: Zugkraftregelung, Drehmomentkorrektur
- 3: Zugkraftregelung, Geschwindigkeitskorrektur
- 4: Tänzerpositionsregelung, Geschwindigkeitskorrektur
- 5: Geschwindigkeitsregelung

Um den PID-Regler in der Applikation Drive Based Center Winder freigeben zu können, müssen der Antriebsregler freigegeben und das Bewegungskommando 30: MC_Winder ausgewählt sein. Der PID-Regler kann beispielsweise über die digitalen Eingänge oder über das Steuerwort des Zentralwicklers freigegeben werden, der Freigabe-Zustand wird im Statuswort des Zentralwicklers angezeigt (Quelle: L370; Steuerwort: L150, Bit 8; Statuswort: L155, Bit 8).

PID-Regler: Skalierung, Begrenzung

Für die Berechnung der Stellgröße werden die Materialzugkraft, die Materialgeschwindigkeit sowie die Tänzerposition am Eingang des PID-Reglers skaliert (Parameter: L357, L358, L359; Einheiten: $N \rightarrow \%$, mm/s $\rightarrow \%$, mm $\rightarrow \%$). Am Ausgang des PID-Reglers wird die Stellgröße zur Korrektur des Solldrehmoments L103 bzw. der Sollgeschwindigkeit L102 der Achse in die Zieleinheit skaliert (Einheiten: $\% \rightarrow N$, $\% \rightarrow mm/s$).

Für den PID-Regler kann eine maximal zulässige positive sowie negative Stellgröße vorgegeben werden (Begrenzung: L355, L356). Ob die Stellgröße und somit auch der Integralanteil des PID-Reglers zurzeit begrenzt wird, wird in Parameter L365 angezeigt.

PID-Regler: Eingänge

Am Eingang des PID-Reglers sind die nachfolgenden Parameter von Bedeutung:

- Regeldifferenz L362
- Kreisverstärkung K₀ L350
- Proportionalbeiwert K_p L351
- Integrierbeiwert K, L352
- Differenzierzeit T_D L353

Die Regeldifferenz ist die Differenz zwischen Sollwert und Istwert des PID-Reglers (Sollwert: L360; Istwert: L361). Der PID-Regler nutzt die Regeldifferenz für Korrekturmaßnahmen, um die Istwerte den Sollwerten anzugleichen.

Die Kreisverstärkung K_o steuert die Reaktionsgeschwindigkeit und Stabilität des Regelkreises. Die Kreisverstärkung beeinflusst, wie präzise und schnell der PID-Regler auf Änderungen in der Material-Istzugkraft oder Tänzer-Istposition reagiert. Die richtige Einstellung ist entscheidend, um Schwingungen zu vermeiden und ein gleichmäßiges Wickelergebnis zu erzielen

Der Proportionalbeiwert K_P steuert die direkte Reaktion des PID-Reglers auf Regeldifferenzen. Ein höherer Proportionalbeiwert verstärkt die Korrektur der Regeldifferenz, während ein niedrigerer Proportionalbeiwert zu einer sanfteren Reaktion führt. Die richtige Einstellung ist entscheidend für eine stabile und effiziente Regelung des Systems.

Der Integrierbeiwert K₁ akkumuliert über die Zeit hinweg Abweichungen zwischen Sollwert und Istwert und korrigiert langfristige Abweichungen. Ein höherer Integrierbeiwert führt zu einer schnelleren Kompensation von langfristigen Fehlern, kann aber zu Instabilität durch Überschwingen führen, wenn er zu hoch eingestellt ist. Ein niedrigerer Integrierbeiwert reagiert langsamer auf Fehler und kann zu einer trägeren Regelung führen. Die richtige Einstellung stellt sicher, dass langfristige Abweichungen zwischen Sollwert und Istwert effektiv korrigiert werden.

Der Differenzierzeit T_D reagiert auf die Änderungsgeschwindigkeit der Abweichung zwischen Sollwert und Istwert. Ein höherer Differenzierzeit verbessert die Reaktion auf schnelle Änderungen. Ein niedrigerer Differenzierzeit führt zu einer glatteren Regelung, reagiert aber langsamer auf schnelle Änderungen. Die richtige Einstellung ist entscheidend für Stabilität und das Vermeiden von unerwünschtem Rauschen.

PID-Regler: Ausgänge

Am Ausgang des PID-Reglers sind die nachfolgenden Parameter von Bedeutung:

- Stellgröße y L366
- Proportionalanteil (P-Anteil) L363
- Integralanteil (I-Anteil) L364

Die Stellgröße y wirkt je nach Regelverfahren des Zentralwicklers auf die Sollgeschwindigkeit oder das Solldrehmoment des Motors. Die Stellgröße wird mit der eigentlichen Sollgröße verrechnet, um die Regeldifferenz auszugleichen.

Für die Korrektur der Sollgeschwindigkeit wird die Summe aus Stellgröße und linearer Material-Sollgeschwindigkeit anhand des Wickeldurchmessers zu einer rotatorischen Sollgeschwindigkeit umgerechnet, die drehrichtungsbereinigt und mit L104 gefiltert als Sollgeschwindigkeit des Motors in L102 angezeigt wird.

Für die Korrektur des Solldrehmoments wird die Summe aus Stellgröße und linearer Material-Sollzugkraft anhand des Wickeldurchmessers zu einem rotatorischen Solldrehmoment umgerechnet, das anschließend mit den Drehmomenten für die Kompensation der Reibung und Massenträgheit der Achse summiert und mit CO9 skaliert als Solldrehmoment des Motors in L103 angezeigt wird.

Der Proportionalanteil ergibt sich aus der Kreisverstärkung K_0 , dem Proportionalbeiwert K_p und der Regeldifferenz e $(K_0$: L350; K_i : L351; e: L362).

Der Integralanteil ergibt sich aus der Kreisverstärkung K_o , dem Integrierbeiwert K_i und der aufintegrierten Regeldifferenz e $(K_o: L350, K_i: L352; e: L362)$.

6.3 Achsmodell

Mithilfe des Achsmodells bilden Sie in der DriveControlSuite die reale mechanische Umgebung Ihres Antriebsprojekts ab, indem Sie den Achstyp sowie die Anordnung vorhandener Encoder parametrieren. Die Parametrierung des Achsmodells ist Voraussetzung für den reibungslosen Betrieb und die einfache Diagnose Ihres Antriebsstrangs.

Grundsätzlich gibt es rotatorische oder translatorische Achsmodelle mit endlosem (modulo) oder begrenztem Verfahrbereich. In Applikationen des Typs Drive Based Center Winder sind I05 Achstyp und I00 Verfahrbereich fest auf ein rotatorisches Achsmodell mit endlosem Verfahrbereich voreingestellt und die Skalierung der Achse erfolgt über die vordefinierte Maßeinheit °. Die Encoderanordnung parametrieren Sie über B26 Motorencoder und I02 Positionsencoder.

STÖBER Antriebsregler der 6. Generation sind speziell für die Kommunikation zwischen Antriebsregler und Steuerung auf Basis der realen Größen am Abtrieb entwickelt (° der wirklichen Achsbewegung). Die Skalierung des Achsmodells wird durch die Firmware des Antriebsreglers unabhängig vom Encodertyp rundungsfehler- und driftfrei gerechnet.

Wenn Ihrem Achsmodell keine weiteren Übersetzungen folgen, können Sie die Achse mit abtriebsseitigen Bewegungsgrößen betreiben, bei denen alle Soll- und Istwerte der realen Achsbewegung entsprechen.

Information

Die Firmware verarbeitet Werte für die Bewegungsgrößen Geschwindigkeit, Beschleunigung und Ruck im Datentyp REAL32 (Fließkommazahl, 32 Bit). Positionswerte werden im Datentyp INT32 (Ganzzahl, 32 Bit) verarbeitet, um Rundungsfehler auszuschließen und präzise Bewegungen zu ermöglichen.

Abkürzung	Bedeutung
М	Motor
MEnc	Motorencoder
PEnc	Positionsencoder

Rotatorisches Achsmodell

Die nachfolgenden Abbildungen zeigt ein endlos-rotatorisches Achsmodell bestehend aus einem Motor, einem Getriebe und einem Rundtisch. Rotatorische Achsmodelle unterstützen rotatorische Motorencoder sowie rotatorische Positionsencoder.

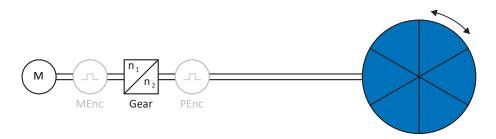


Abb. 37: Endlos-rotatorische Bewegung: Rundtisch

Encoderanordnung

Die Encoderanordnung parametrieren Sie über B26 Motorencoder und I02 Positionsencoder. Der Motorencoder für die Geschwindigkeitsregelung befindet sich auf der Motorwelle, der Positionsencoder für die Positionsregelung befindet sich am Getriebeabtrieb. Wenn Sie nur einen der beiden Encoder einsetzen, wird dieser sowohl für die Geschwindigkeits- als auch für die Positionsregelung verwendet.

Encoder	Parametrierung	Encoderanordnung
Motorencoder	B26 ≠ 0: Inaktiv I02 = 0: Motorencoder	MEnc Getriebe PEnc
Positionsencoder	B26 ≠ 0: Inaktiv I02 = B26	MEnc Getriebe PEnc
Motorencoder & Positionsencoder	B26 ≠ 0: Inaktiv I02 ≠ B26	MEnc Getriebe PEnc

6.4 Endschalter

Endschalter sind Sensoren, die erkennen, wenn eine bestimmte Position erreicht ist.

Es wird dabei zwischen Hardware-Endschaltern und Software-Endschaltern unterschieden. Während es sich bei einem Hardware-Endschalter um einen echten Schalter (Hardware) handelt, bezeichnet ein Software-Endschalter die in der Software realisierte Positionsbegrenzung oder Positionsüberwachung.

Software-Endschalter sind nur bei begrenztem Verfahrbereich verfügbar (IOO = O: Begrenzt), stehen in Applikationen des Typs Drive Based Center Winder also nicht zur Verfügung, da das Achsmodell fest endlos-rotatorisch voreingestellt ist.

Sonderfälle stellen das Verhalten bei Tippen, das Erreichen der +/- 31 Bit-Rechengrenze und das gleichzeitige Auslösen von positivem und negativem Endschalter dar.

6.4.1 Reale Achsen

6.4.1.1 Störungen

Beim Überfahren eines Hardware-Endschalters wird umgehend eine Störung ausgelöst (Signal: 1441, 1442).

Störung

53: Endschalter

Ursachen

- 1: HW-Endschalter positiv
- 2: HW-Endschalter negativ
- 5: +/- 31 Bit-Rechengrenze erreicht
- 7: Beide HW-Endschalter nicht angeschlossen

Die Störung kann quittiert werden. Beim Überfahren des jeweiligen Endschalters wird eine Richtungssperre ausgelöst, sodass nur in entgegengesetzter Bewegungsrichtung vom Endschalter heruntergefahren werden kann (Richtungssperre: 1196). Sobald die Richtungssperre nicht mehr aktiv ist, kann die Störung erneut ausgelöst werden.

6.4.1.2 Verweigerung

Wenn ein Endschalter überfahren wird, wird eine Richtungssperre ausgelöst und eine Bewegung der Achse in die gesperrte Richtung wird verweigert (Richtungssperre: I196).

Bei Hardware-Endschaltern wird die Richtungssperre deaktiviert, sobald die Achse vom Endschalter heruntergefahren ist, d. h. sobald das Signal nicht mehr aktiv ist (Signal: 1441, 1442).

Bei aktiver Richtungssperre ist Parameter 191 Fehler = 1: Aktiv, die Ursache wird in Parameter 190 angezeigt.

Ursachen

- 1: Unzulässige Richtung
- 11: Verweigert wegen pos. HW-Endschalter
- 12: Verweigert wegen neg. HW-Endschalter

Eine Einschränkung der Bewegungsrichtung wird Ihnen auch in Parameter E80 ausgegeben:

- E80 = 20: Endschalter:
 - Prüfen Sie die Parametrierung und den Anschluss der Endschalter.
- E80 = 15: Unzulässige Richtung:

Prüfen Sie die Sollwerte und eine eventuelle Richtungssperre in Parameter I196.

Prüfen Sie I196 auch dann, wenn die zulässige Richtung mit I04 eingeschränkt wurde.

6.4.1.3 Hardware-Endschalter

Hardware-Endschalter gelten, wenn ihre Quellen in den Parametern I101 und I102 definiert sind.

Relevante Parameter

- I101 Quelle positiver /Endschalter
- I102 Quelle negativer /Endschalter
- I441 Signal /Hw-Endschalter Positiv
- I442 Signal /Hw-Endschalter Negativ
- 1805 Wirksames Signal Positiver Hardware-Endschalter
- 1806 Wirksames Signal Negativer Hardware-Endschalter
- I52 Endschalterspeicher löschen
- I196 Richtungssperre

Sind I441 und I442 = 0: Inaktiv, wird Störung 53 mit Ursache 7: Beide HW-Endschalter nicht angeschlossen ausgelöst. Prüfen Sie deshalb nach der Parametrierung von I101 und I102, ob die Hardware-Endschalter auch physikalisch angeschlossen sind.

Sind I101 und I102 = 2: Parameter, dann wird die Störung durch das Steuerwort der Applikation ausgelöst (I210). Prüfen Sie in diesem Fall die Steuerungsanbindung.

Überfahrbare Hardware-Endschalter

Die Hardware-Endschalter sind überfahrbar. Es ist deshalb möglich, einen endlichen Nocken als Hardware-Endschalter einzusetzen. Der Endschalter wird erkannt, wenn das Signal auf 0: Inaktiv geht (Parameter 1441 und 1442).

Bei Überfahren des Hardware-Endschalters wird die Position gespeichert, an der der Endschalter erkannt wurde. Beim Zurückfahren vom Endschalter muss die Achse diese gespeicherte Position erreicht oder unterschritten haben, bevor das Signal wieder gültig wird.

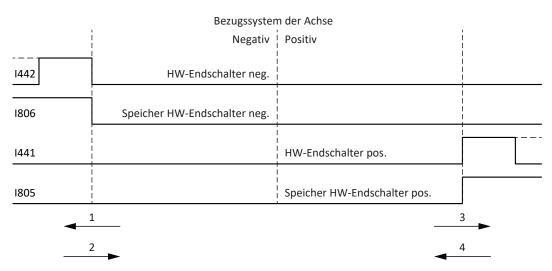


Abb. 38: HW-Endschalterspeicher

- 1 Setzen des Speichers (HW-Endschalter negativ) mit steigender Flanke
- Zurücksetzen des Speichers (HW-Endschalter negativ) mit fallender Flanke
- 3 Setzen des Speichers (HW-Endschalter positiv) mit steigender Flanke
- 4 Zurücksetzen des Speichers (HW-Endschalter positiv) mit fallender Flanke

Information

Der überfahrbare Hardware-Endschalter gilt als nicht mehr wirksam, wenn die Position, an der die Flanke des Endschalters erkannt wurde, wieder unterschritten wurde.

Beachten Sie, dass die Positionen nicht remanent gespeichert sind. Dies bedeutet: Steht die Achse nach Einschalten hinter einem überfahrbaren Endschalter, muss sie zunächst in den regulären Verfahrbereich zurückgefahren werden.

Das Gesamtsystem wird einfacher, wenn Sie keine überfahrbaren Endschalter einsetzen.

Bei der Inbetriebnahme oder bei defekten Anschlüssen der Hardware-Endschalter kann es zu Problemen mit den gespeicherten Positionen kommen. Diese können Sie mit Parameter I52 löschen. Das Löschen findet allerdings nur statt, wenn das entsprechende Endschaltersignal inaktiv ist. Gespeicherte Positionen können auch über eine Referenzfahrt gelöscht werden, das Setzen einer Referenz kann über I452 oder über einen Neustart des Antriebsreglers gelöscht werden.

Bei einer Referenzfahrt werden die Hardware-Endschalter nicht im Sinne eines Endschalters ausgewertet. Es gibt Referenziermethoden, bei denen die Hardware-Endschalter zur Referenzierung genutzt werden.

Beispiel

Ein positiver Endschalter reicht von Position 100 bis 120.

Beim Verfahren in positiver Richtung wird er bei 100 erkannt.

Bei der Rückfahrt kann es – bedingt durch Toleranzen – vorkommen, dass der Endschalter schon bei 101 verlassen wird. Trotzdem muss Position 100 unterschritten werden, um den wirksamen Endschalter zu verlassen.

6.4.1.4 Hardware-Endschalter bei Referenzfahrt

Bei der Referenzfahrt nehmen die Hardware-Endschalter eine Sonderstellung ein.

Endschalter als Referenzschalter

Die Hardware-Endschalter können anstelle eines Referenzschalters verwendet werden (130 = 2: Endschalter).

Fahrtrichtungsumkehr

Bei anderen Referenziertypen führt ein Hardware-Endschalter-Signal zur Umkehr der Fahrtrichtung. Das Signal führt allerdings nur zur einer Umkehr, wenn es zur Fahrtrichtung passt.

Passt der erkannte Hardware-Endschalter nicht zur Fahrtrichtung (z. B. negativer Endschalter bei positiver Fahrtrichtung), dann wird eine Störung ausgelöst.

Beispiel

Zu Beginn der Referenzfahrt steht die Achse zwischen Referenzschalter und positivem Endschalter. Die Richtung der Referenzfahrt ist positiv. Die Achse fährt in positive Richtung und findet anstelle des Referenzschalters zuerst den positiven Endschalter. Die Achse dreht um und sucht den Referenzschalter in der anderen Richtung.

6.4.2 Sonderfälle

Nachfolgend sind einige Sonderfälle beschrieben.

6.4.2.1 Erreichen der +/- 31 Bit-Rechengrenze

Störung:

53: Endschalter

Ursache:

5: +/- 31 Bit-Rechengrenze erreicht

Die Rechengrenze kann z. B. erreicht werden, wenn bei fahrender Achse so viele Kommandos aufeinanderfolgen, dass sich die insgesamt zu verfahrende Strecke (inklusive Nachkommastellen) über 2³¹ hinaus addiert.

6.4.2.2 Gleichzeitiges Erkennen von positivem und negativem Hardware-Endschalter

Störung:

53: Endschalter

Ursache:

7: Beide HW-Endschalter nicht angeschlossen

Diese Störung wird ausgelöst, wenn 1441 und 1442 beide 0: Inaktiv sind. Prüfen Sie, ob die Hardware-Endschalter auch physikalisch angeschlossen sind.

Sind I101 und I102 = 2: Parameter, dann wird die Störung durch das Steuerwort der Applikation ausgelöst (I210). Prüfen Sie in diesem Fall die Steuerungsanbindung.

Der Fehler kann mit I52 quittiert werden.

6.4.2.3 Verhalten bei Geräteanlauf der Steuerung

Störung:

53: Endschalter

Ursache:

7: Beide HW-Endschalter nicht angeschlossen

Wenn eine Steuerung als Quelle für die digitalen Signale zur Auswertung der Hardware-Endschalter dient und sich diese noch im Geräteanlauf befindet, während der Antriebsregler und die Feldbuskommunikation bereits aktiv sind, wird Störung 53: Endschalter ausgelöst und der Endschalterspeicher wird gesetzt (1805, 1806 = 1: Aktiv).

Wenn seit Einschalten der Versorgungsspannung das Leistungsteil noch nicht freigegeben wurde, wird der Endschalterspeicher automatisch zurückgesetzt, sobald die Steuerung die Signale zur Auswertung der Hardware-Endschalter korrekt überträgt.

6.5 Referenzierung

Um bei einer Anlage mit Positionsmesssystemen mit absoluten Positionen arbeiten zu können, muss ermittelt werden, in welcher Relation eine gemessene zu einer realen Achsposition steht.

Bei der Erstinbetriebnahme oder nach Änderungen des Achsmodells ist die tatsächliche Position der Achse unbekannt; eine definierte Ausgangslage ist notwendig. In der Regel wird diese entweder durch eine Referenzsuche oder durch ein Referenzsetzen identifiziert. Der zugehörige Vorgang wird als Referenzierung bezeichnet.

Absolute Bewegungen können ausschließlich in referenziertem Zustand ausgeführt werden.

Bei relativen Bewegungen ist die Referenzierung nur erforderlich, wenn gleichzeitig die Funktion Software-Endschalter verwendet wird.

6.5.1 Referenziermethoden

Nachfolgende Tabelle zeigt einen Überblick über die möglichen Referenziermethoden.

Abkürzung	Bedeutung
S	Switch (Schalter)
M/F	Drehmoment oder Kraft

	Methode	Initial- bewegung	Nullimpuls	Merkmal
S ←	А	Negativ	Ja	Negativer Endschalter
	В	Negativ	Ja	Negativ angeordneter Referenzschalter
	С	Negativ	_	Negativer Endschalter
	D	Negativ	_	Negativ angeordneter Referenzschalter
→ S	Е	Positiv	Ja	Positiver Endschalter
	F	Positiv	Ja	Positiv angeordneter Referenzschalter
	G	Positiv	_	Positiver Endschalter
	Н	Positiv	_	Positiv angeordneter Referenzschalter
<u> </u>	1	Positiv	Ja	Mittig angeordneter Referenzschalter
	J	Positiv	_	Mittig angeordneter Referenzschalter
S ←	K	Negativ	Ja	Mittig angeordneter Referenzschalter
	L	Negativ	_	Mittig angeordneter Referenzschalter
	М	Negativ	Ja	Nullimpuls
	N	Positiv	Ja	Nullimpuls
<u> </u>	0	_	_	Referenz setzen
M/F →	Р	Positiv	_	Drehmoment-/Kraftanschlag
	Q	Positiv	Ja	Drehmoment-/Kraftanschlag
← M/F	R	Negativ	_	Drehmoment-/Kraftanschlag
	S	Negativ	Ja	Drehmoment-/Kraftanschlag

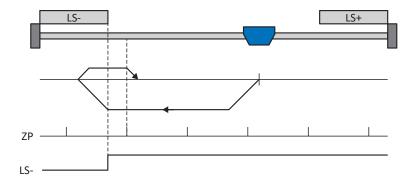
Tab. 6: Referenziermethoden

6.5.1.1 Referenziermethoden im Detail

Nachfolgende Kapitel zeigen die einzelnen Referenziermethoden im Detail.

In den Grafiken zu den Referenziermethoden werden folgende Abkürzungen verwendet:

Abkürzung	Bedeutung
ALT	Alternative
LS	Limit Switch (Endschalter)
RS	Reference Switch (Referenzschalter)
ZP	Zero Pulse (Nullimpuls)


Für die grafischen Darstellungen von Achsen gilt, dass links der kleinste und rechts der größte Positionswert liegen. Eine positive Bewegung ist folglich nach rechts, eine negative nach links gerichtet.

In den Beschreibungen zu den Referenziermethoden werden folgende Parameter verwendet:

Koordinate	Name
128	Referenzfahrt Drehmoment/Kraft-Grenze
129	Zeit Referenzfahrt Drehmoment/Kraft-Grenze
130	Referenziertyp
131	Referenzierfahrt Richtung
132	Referenziergeschwindigkeit schnell
133	Referenziergeschwindigkeit langsam
134	Referenzposition
135	Referenzierung mit Nullimpuls
139	Referenzierbeschleunigung
143	Fahre zur Referenzposition
144	Referenzierruck
153	Nullimpuls Suchwegverschiebung
1101	Quelle positiver /Endschalter
1102	Quelle negativer /Endschalter
1103	Quelle Referenzschalter

6.5.1.1.1 Referenziermethode A

Referenziermethode A ermittelt eine Referenz durch eine Fahrt zu negativem Endschalter und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode A, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 2: Endschalter,

I31 auf 1: Negativ,

135 auf 1: Aktiv.

2. |102:

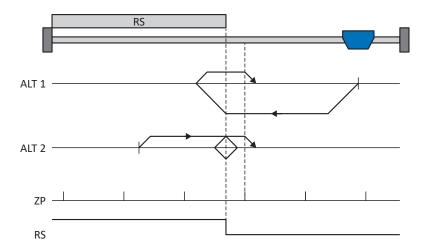
Geben Sie die Quelle für den negativen Endschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

4. I53:

Definieren Sie den Suchstart für die Nullimpulssuche


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des negativen Endschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Endschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.2 Referenziermethode B

Referenziermethode B ermittelt die Referenz durch eine Fahrt zu negativ angeordnetem Referenzschalter und Nullimpuls.

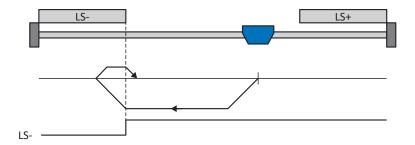
Vorbereitung

- 1. Aktivieren Sie Referenziermethode B, indem Sie folgende Parameter auf die angegebenen Werte setzen:
 - 130 auf 1: Referenzschalter,
 - 131 auf 1: Negativ,
 - 135 auf 1: Aktiv.
- 2. I103:

Geben Sie die Quelle für den Referenzschalter an.

- 3. 132, 133, 139, 144, 134:
 - Definieren Sie die für die Referenzierung notwendigen Sollwerte.
- 4. 153

Definieren Sie den Suchstart für die Nullimpulssuche


Referenzierung

 $Ist \ das \ PL Copen-Kommando \ MC_Home \ aktiv, werden \ zwei \ Referenzierungsvarianten \ unterschieden.$

- ✓ Alternative 1: Antrieb ist vor Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Referenzschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er erneut seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Nullimpuls erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.3 Referenziermethode C

Referenziermethode C ermittelt die Referenz durch eine Fahrt zum negativen Endschalter.

Vorbereitung

1. Aktivieren Sie Referenziermethode C, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 2: Endschalter,

I31 auf 1: Negativ,

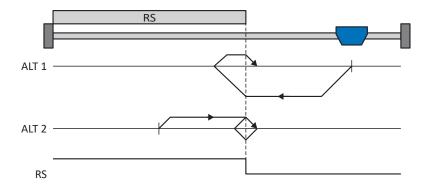
135 auf 0: Inaktiv.

2. I102:

Geben Sie die Quelle für den negativen Endschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

Ist das PLCopen-Kommando MC Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des negativen Endschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Endschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Endschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.4 Referenziermethode D

Referenziermethode D ermittelt die Referenz durch eine Fahrt zum negativ angeordneten Referenzschalter.

Vorbereitung

1. Aktivieren Sie Referenziermethode D, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

I31 auf 1: Negativ,

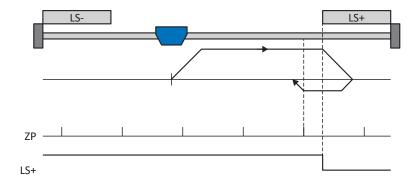
135 auf 0: Inaktiv.

2. I103:

Geben Sie die Quelle für den Referenzschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, werden zwei Referenzierungsvarianten unterschieden.

- ✓ Alternative 1: Antrieb ist vor Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in positiver Richtung, bis er den Referenzschalter verlässt.
- 2. Er ändert mit dem Verlassen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Referenzschalter erneut erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung I39 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.5 Referenziermethode E

Referenziermethode E ermittelt die Referenz durch eine Fahrt zu positivem Endschalter und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode E, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 2: Endschalter,

I31 auf 0: Positiv,

135 auf 1: Aktiv.

2. |101:

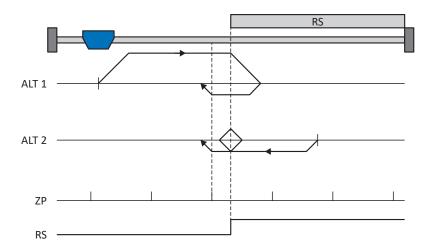
Geben Sie die Quelle für den positiven Endschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

4. 153:

Definieren Sie den Suchstart für die Nullimpulssuche


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des positiven Endschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Endschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.6 Referenziermethode F

Referenziermethode F ermittelt die Referenz durch eine Fahrt zu positiv angeordnetem Referenzschalter und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode F, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

I31 auf 0: Positiv,

135 auf 1: Aktiv.

2. I103:

Geben Sie die Quelle für den Referenzschalter an.

- 3. 132, 133, 139, 144, 134:
 - Definieren Sie die für die Referenzierung notwendigen Sollwerte.
- 4. 153

Definieren Sie den Suchstart für die Nullimpulssuche


Referenzierung

Ist das PLCopen-Kommando MC Home aktiv, werden zwei Referenzierungsvarianten unterschieden.

- ✓ Alternative 1: Antrieb ist vor Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Referenzschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in negativer Richtung.
- Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er erneut seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Nullimpuls erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.7 Referenziermethode G

Referenziermethode G ermittelt die Referenz durch eine Fahrt zum positiven Endschalter.

Vorbereitung

1. Aktivieren Sie Referenziermethode G, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 2: Endschalter,

I31 auf 0: Positiv,

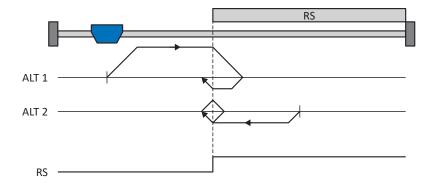
135 auf 0: Inaktiv.

2. I101

Geben Sie die Quelle für den positiven Endschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des positiven Endschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Endschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Endschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.8 Referenziermethode H

Referenziermethode H ermittelt die Referenz durch eine Fahrt zum positiv angeordneten Referenzschalter.

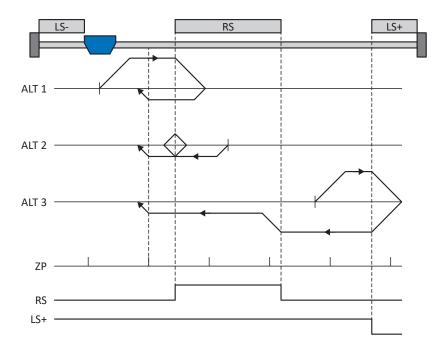
Vorbereitung

- 1. Aktivieren Sie Referenziermethode H, indem Sie folgende Parameter auf die angegebenen Werte setzen:
 - 130 auf 1: Referenzschalter,
 - I31 auf 0: Positiv,
 - 135 auf 0: Inaktiv.
- 2. |1103:

Geben Sie die Quelle für den Referenzschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

 $Ist\ das\ PLC open-Kommando\ MC_Home\ aktiv,\ werden\ zwei\ Referenzierungsvarianten\ unterschieden.$

- ✓ Alternative 1: Antrieb ist vor Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in negativer Richtung, bis er den Referenzschalter verlässt.
- 2. Er ändert mit dem Verlassen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter erneut erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.9 Referenziermethode I

Referenziermethode I ermittelt die Referenz durch eine Fahrt zu mittig angeordnetem Referenzschalter und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode I, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

I31 auf 0: Positiv,

135 auf 1: Aktiv.

2. I103:

Geben Sie die Quelle für den Referenzschalter an.

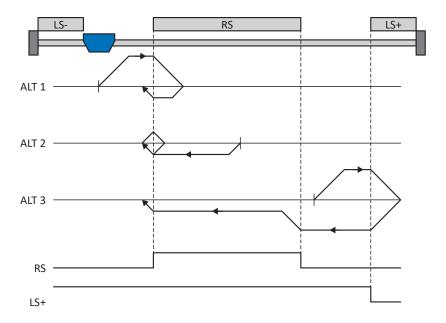
3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

4. 153:

Definieren Sie den Suchstart für die Nullimpulssuche

Referenzierung


Ist das PLCopen-Kommando MC_Home aktiv, werden drei Referenzierungsabläufe unterschieden.

- ✓ Alternative 1: Antrieb ist zwischen negativem End- und Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Referenzschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er erneut seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Nullimpuls erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 3: Antrieb ist zwischen Referenz- und positivem Endschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des positiven Endschalters seine Richtung, bis er den Referenzschalter erreicht.
- 3. Mit dem Erreichen des Referenzschalters ändert der Antrieb seine Geschwindigkeit auf I33, bis er den Referenzschalter wieder verlässt.
- 4. Die aktuelle Istposition wird nach dem Verlassen des Referenzschalters und mit dem Erreichen des nächsten Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.10 Referenziermethode J

Referenziermethode J ermittelt die Referenz durch eine Fahrt zum mittig angeordneten Referenzschalter.

Vorbereitung

1. Aktivieren Sie Referenziermethode J, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

I31 auf 0: Positiv,

135 auf 0: Inaktiv.

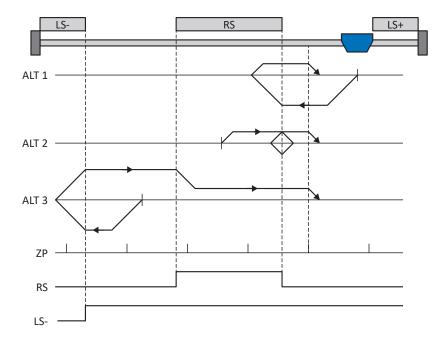
2. I103:

Geben Sie die Quelle für den Referenzschalter an.

3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

Referenzierung


Ist das PLCopen-Kommando MC_Home aktiv, werden drei Referenzierungsabläufe unterschieden.

- ✓ Alternative 1: Antrieb ist zwischen negativem End- und Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung I39 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort, bis er den Referenzschalter verlässt.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Referenzschalter erneut erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 3: Antrieb ist zwischen Referenz- und positivem Endschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Mit dem Erreichen des positiven Endschalters ändert der Antrieb seine Richtung und setzt seine Fahrt fort, bis er den Referenzschalter erreicht.
- 3. Mit dem Erreichen des Referenzschalters ändert der Antrieb seine Geschwindigkeit auf I33, bis er den Referenzschalter wieder verlässt.
- 4. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition 134 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.11 Referenziermethode K

Referenziermethode K ermittelt die Referenz durch eine Fahrt zu mittig angeordneten Referenzschalter und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode K, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

131 auf 1: Negativ,

135 auf 1: Aktiv.

2. I103:

Geben Sie die Quelle für den Referenzschalter an.

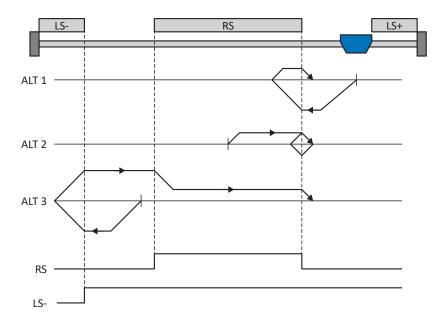
3. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

4. 153:

Definieren Sie den Suchstart für die Nullimpulssuche

Referenzierung


Ist das PLCopen-Kommando MC_Home aktiv, werden drei Referenzierungsvarianten unterschieden.

- ✓ Alternative 1: Antrieb ist zwischen Referenz- und positivem Endschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er nach dem Verlassen des Referenzschalters den nächsten Nullimpuls erreicht.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 133 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er erneut seine Richtung und setzt seine Fahrt mit der Geschwindigkeit 133 fort, bis er den Nullimpuls erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 3: Antrieb ist zwischen negativem End- und Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des negativen Endschalters seine Richtung und setzt seine Fahrt fort, bis er den Referenzschalter erreicht.
- 3. Mit dem Erreichen des Referenzschalters ändert der Antrieb seine Geschwindigkeit auf I33 und setzt seine Fahr fort, bis er nach dem Verlassen des Referenzschalters den nächsten Nullimpuls erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.12 Referenziermethode L

Referenziermethode L ermittelt die Referenz durch eine Fahrt zum mittig angeordneten Referenzschalter.

Vorbereitung

1. Aktivieren Sie Referenziermethode L, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 1: Referenzschalter,

131 auf 1: Negativ,

135 auf 0: Inaktiv.

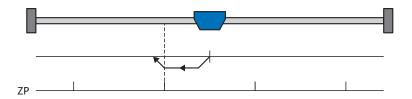
2. I103:

Geben Sie die Quelle für den Referenzschalter an.

3. I32, I33, I39, I44, I34:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

Referenzierung


Ist das PLCopen-Kommando MC_Home aktiv, werden drei Referenzierungsvarianten unterschieden.

- ✓ Alternative 1: Antrieb ist zwischen Referenz- und positivem Endschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter wieder verlässt.
- 3. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 4. Der Antrieb kommt mit der Verzögerung I39 zum Stillstand.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

- ✓ Alternative 2: Antrieb steht auf Referenzschalter
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I33 in positiver Richtung, bis er den Referenzschalter verlässt.
- 2. Er ändert mit dem Verlassen des Referenzschalters seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I32 fort.
- 3. Wenn der Antrieb nach dem Referenzschalter zum Stehen kommt, ändert er seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er den Referenzschalter erneut erreicht.
- 4. Die aktuelle Istposition wird mit dem Erreichen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.
- ✓ Alternative 3: Antrieb ist zwischen negativem End- und Referenzschalter positioniert
- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des negativen Endschalters seine Richtung und setzt seine Fahr fort, bis er den Referenzschalter erreicht.
- 3. Mit dem Erreichen des Referenzschalters ändert der Antrieb seine Geschwindigkeit auf I33 und setzt seine Fahr fort, bis er den Referenzschalter wieder verlässt.
- 4. Die aktuelle Istposition wird mit dem Verlassen des Referenzschalters auf den Wert der Referenzposition I34 gesetzt.
- 5. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 6. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.13 Referenziermethode M

Diese Methode ermittelt die Referenz durch eine Fahrt zum Nullimpuls.

Vorbereitung

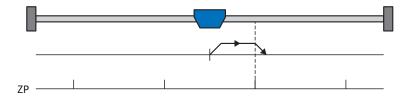
1. Aktivieren Sie Referenziermethode M, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 3: Nullimpuls,

I31 auf 1: Negativ,

2. 132, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition 134 gesetzt.
- 3. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 4. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.14 Referenziermethode N

Referenziermethode N ermittelt die Referenz durch eine Fahrt zum Nullimpuls.

Vorbereitung

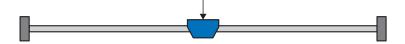
1. Aktivieren Sie Referenziermethode N, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 3: Nullimpuls,

I31 auf 0: Positiv,

2. 132, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.


Referenzierung

Ist das PLCopen-Kommando MC Home aktiv, wird wie folgt referenziert:

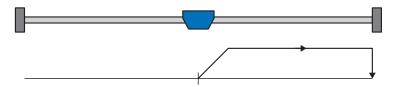
- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 3. Der Antrieb kommt mit der Verzögerung 139 zum Stillstand.
- 4. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.15 Referenziermethode 0

Referenziermethode O ermittelt die Referenz durch das Setzen der Referenz an beliebiger Position.

Vorbereitung

- 1. I30:
 - Aktivieren Sie Referenziermethode O, indem Sie diesen Parameter auf 5: Referenz setzen setzen.
- 134:
 Definieren Sie die Referenzposition.


Referenzierung

Ist das PLCopen-Kommando MC Home aktiv, wird wie folgt referenziert:

Die aktuelle Istposition wird auf den Wert der Referenzposition 134 gesetzt.

6.5.1.1.16 Referenziermethode P

Referenziermethode P ermittelt die Referenz durch eine Fahrt mit Drehmoment-/Kraftanschlag.

Vorbereitung

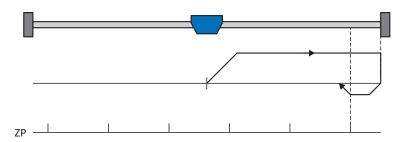
- 1. Aktivieren Sie Referenziermethode P, indem Sie folgende Parameter auf die angegebenen Werte setzen:
 - 130 auf 4: Moment-/Kraftanschlag,
 - I31 auf 0: Positiv,
 - 135 auf 0: Inaktiv.
- 2. 132, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

3. 128, 129:

Definieren Sie die Drehmoment-/Kraftgrenze. Liegt das Istdrehmoment für die in I29 hinterlegte Zeit dauerhaft über der in I28 definierten Grenze, ist die Drehmoment-/Kraftgrenze erreicht.

Bei einem zu groß gewählten Wert für die Größe Drehmoment/Kraft kann die Maschine beschädigt werden; bei einem zu klein gewählten Wert wird eventuell eine falsche Referenzposition übernommen.


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in positiver Richtung.
- 2. Die aktuelle Istposition wird mit dem Erreichen der Drehmoment-/Kraftgrenze und dem Ablauf der in I29 hinterlegten Zeit auf den Wert der Referenzposition I34 gesetzt.
- 3. Die Sollwerte werden mit der Verzögerung I39 auf den Wert 0 gesetzt.
- 4. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.17 Referenziermethode Q

Referenziermethode Q ermittelt die Referenz durch eine Fahrt mit Drehmoment-/Kraftanschlag und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode Q, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 4: Moment-/Kraftanschlag,

I31 auf 0: Positiv,

135 auf 1: Aktiv.

2. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

3. 128, 129:

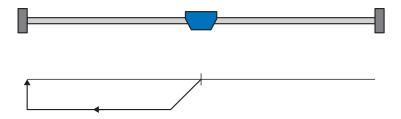
Definieren Sie die Drehmoment-/Kraftgrenze. Liegt das Istdrehmoment für die in I29 hinterlegte Zeit dauerhaft über der in I28 definierten Grenze, ist die Drehmoment-/Kraftgrenze erreicht.

4. 153:

Definieren Sie den Suchstart für die Nullimpulssuche.

Information

Bei einem zu groß gewählten Wert für die Größe Drehmoment/Kraft kann die Maschine beschädigt werden; bei einem zu klein gewählten Wert wird eventuell eine falsche Referenzposition übernommen.


Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in positiver Richtung.
- 2. Er ändert mit dem Erreichen des Drehmoment-/Kraftanschlags und dem Ablauf der in I29 hinterlegten Zeit seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er zum nächsten Nullimpuls gelangt.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Die Sollwerte werden mit der Verzögerung 139 auf den Wert 0 gesetzt.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.18 Referenziermethode R

Referenziermethode R ermittelt die Referenz durch eine Fahrt mit Drehmoment-/Kraftanschlag.

Vorbereitung

1. Aktivieren Sie Referenziermethode R, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 4: Moment-/Kraftanschlag,

I31 auf 1: Negativ,

135 auf 0: Inaktiv.

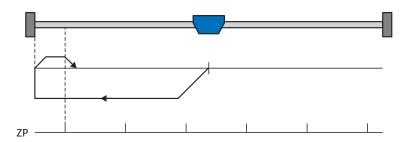
2. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

3. 128, 129:

Definieren Sie die Drehmoment-/Kraftgrenze. Liegt das Istdrehmoment für die in I29 hinterlegte Zeit dauerhaft über der in I28 definierten Grenze, ist die Drehmoment-/Kraftgrenze erreicht.

Information


Bei einem zu groß gewählten Wert für die Größe Drehmoment/Kraft kann die Maschine beschädigt werden; bei einem zu klein gewählten Wert wird eventuell eine falsche Referenzposition übernommen.

Referenzierung

- 1. Der Antrieb startet mit der Beschleunigung 139 und der Geschwindigkeit 132 in negativer Richtung.
- 2. Die aktuelle Istposition wird mit dem Erreichen des Drehmoment-/Kraftanschlags und dem Ablauf der in I29 hinterlegten Zeit auf den Wert der Referenzposition I34 gesetzt.
- 3. Die Sollwerte werden mit der Verzögerung 139 auf den Wert 0 gesetzt.
- 4. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.1.1.19 Referenziermethode S

Referenziermethode S ermittelt die Referenz durch eine Fahrt mit Drehmoment-/Kraftanschlag und Nullimpuls.

Vorbereitung

1. Aktivieren Sie Referenziermethode S, indem Sie folgende Parameter auf die angegebenen Werte setzen:

130 auf 4: Moment-/Kraftanschlag,

I31 auf 1: Negativ,

135 auf 1: Aktiv.

2. 132, 133, 139, 144, 134:

Definieren Sie die für die Referenzierung notwendigen Sollwerte.

3. 128, 129:

Definieren Sie die Drehmoment-/Kraftgrenze. Liegt das Istdrehmoment für die in I29 hinterlegte Zeit dauerhaft über der in I28 definierten Grenze, ist die Drehmoment-/Kraftgrenze erreicht.

4. 153:

Definieren Sie den Suchstart für die Nullimpulssuche

Information

Bei einem zu groß gewählten Wert für die Größe Drehmoment/Kraft kann die Maschine beschädigt werden; bei einem zu klein gewählten Wert wird eventuell eine falsche Referenzposition übernommen.

Referenzierung

Ist das PLCopen-Kommando MC_Home aktiv, wird wie folgt referenziert:

- 1. Der Antrieb startet mit der Beschleunigung I39 und der Geschwindigkeit I32 in negativer Richtung.
- 2. Er ändert mit dem Erreichen des Drehmoment-/Kraftanschlags und nach Ablauf der in I29 hinterlegten Zeit seine Richtung und setzt seine Fahrt mit der Geschwindigkeit I33 fort, bis er zum nächsten Nullimpuls gelangt.
- 3. Die aktuelle Istposition wird mit dem Erreichen des Nullimpulses auf den Wert der Referenzposition I34 gesetzt.
- 4. Die Sollwerte werden mit der Verzögerung 139 auf den Wert 0 gesetzt.
- 5. Ist I43 auf 1: Aktiv gesetzt, positioniert der Antrieb auf die Referenzposition I34.

6.5.2 Referenzposition

Abhängig vom Referenziertyp I30 wird beim Referenzierereignis die Istposition I80 durch die Referenzposition I34 ersetzt.

6.5.3 Referenzerhaltung

STÖBER bietet ein komfortables, antriebsbasierendes Referenziersystem. Abhängig vom eingesetzten Encodertyp und der Referenzverwaltung werden unterschiedliche Arten der Referenzerhaltung (146) angeboten.

6.5.4 Referenzverlust

Achse

In bestimmten Fällen verliert eine Achse ihre Referenz und ihr Zustand wechselt von 186 = 1: Aktiv zu 186 = 0: Inaktiv.

Normaler Betrieb (Achse)

Während des normalen Betriebs können Encoderstörungen oder Aktionen zum Verlust der Referenz führen. Wurde die Referenz durch ein Encoderereignis gelöscht, kann diese im Anschluss wiederhergestellt werden.

Information

Prüfen Sie vor der Wiederherstellung der Referenz die angezeigte Istposition (I80). Referenzieren Sie im Zweifelsfall neu. Bei Verwendung relativer Encoder, oder wenn die Achse während der Encoderstörung noch in Bewegung war, kann die angezeigte Istposition von der realen Istposition der Achse abweichen.

Ursache		Prüfung und Maßnahme
Ereignis 76: Positionsencoder	Encoderstörung	Istposition ist eventuell noch korrekt, Wiederherstellung der Referenz ist möglich: Istposition prüfen (I80). Referenz bestätigen (I130) oder Achse neu referenzieren
Ereignis 37: Motorencoder	Encoderstörung	Bei Verwendung des Motorencoders als Positionsencoder (IO2 = 0: Motorencoder) werden 2 Störungen ausgelöst (37: Motorencoder und 76: Positionsencoder); im Anzeigeparameter E82 und im Störungsspeicher wird gegebenenfalls nur eine Störung angezeigt. Istposition ist eventuell noch korrekt, Wiederherstellung der Referenz ist möglich: Istposition prüfen (I80). Referenz bestätigen (I130) oder Achse neu referenzieren
Aktion I38	Gelöschte Referenz	Aktion I38 löscht die Referenz, führt jedoch nicht zu einer Änderung der angezeigten Istposition. Istposition ist eventuell noch korrekt, Wiederherstellung der Referenz ist nicht möglich: Istposition prüfen (I80). Achse neu referenzieren

Tab. 7: Referenzverlust der Achse im normalen Betrieb

Ändern von Parametern (Achse)

Das Ändern einzelner Parameter oder das Übertragen einer neuen Konfiguration mit geänderten Einstellungen kann zum Verlust der Referenz führen.

Ursache		Prüfung und Maßnahme
Ürsache Ändern von Parametern	Geändertes Achsmodell	Prüfung und Maßnahme Istposition ist undefiniert, wenn einer der folgenden Parameter geändert wurde: B26 Motorencoder C15 Getriebefaktor n1 C16 Getriebefaktor n2 C17 Vorschub Zähler C18 Vorschub Nenner I00 Verfahrbereich I01 Umlauflänge I02 Positionsencoder I03 Achs-Polarität I05 Achstyp I07 Zähler Positionswegfaktor
		Wiederherstellung der Referenz ist nicht möglich: • Achse neu referenzieren
Ändern von Parametern	Geänderte Encoderschnittstelle	Istposition ist undefiniert, wenn ein Parameter der H-Gruppe geändert wurde. Wiederherstellung der Referenz ist nicht möglich:
		Achse neu referenzieren

Tab. 8: Referenzverlust der Achse durch Parameteränderungen

Neustart des Antriebsreglers (Achse)

In Abhängigkeit von Encoderart und Methode zur Referenzerhaltung (I46) wird nach einem Neustart die Referenz einer zuvor referenzierten Achse wiederhergestellt oder gelöscht.

Per Default (I46 = 0: Normal) bleibt bei einem Multiturn-Absolutwertencoder die Referenz nach einem Neustart erhalten, sofern die Achse mit diesem Encoder referenziert wurde. In allen anderen Fällen wird die Referenz gelöscht, sobald der Antriebsregler ausgeschaltet wird.

Die Methode zur Referenzerhaltung kann in I46 angepasst werden. Neben der Default-Einstellung stehen folgende weitere Optionen zur Verfügung:

- Referenz bleibt erhalten, wenn der Messbereich den gesamten Verfahrbereich abdeckt
- Referenz bleibt erhalten, solange die Positionsänderung im ausgeschalteten Zustand kleiner ist als das Referenzerhaltungsfenster (I48)
- Referenz bleibt unabhängig vom Vorhandensein eines Encoders erhalten
- Referenz bleibt unabhängig vom Typ des Encoders erhalten
- Referenz wird beim Ausschalten des Antriebsreglers gelöscht

Sonderfall vertauschter Motoranschluss (Achse)

Wird – beispielsweise nach einem Service-Fall – ein Motor versehentlich an die falsche Achse bzw. den falschen Antriebsregler angeschlossen, verhält sich der Antriebsregler nach dem Einschalten wie folgt:

- Die Achse wechselt in den nicht referenzierten Zustand (186 = 0: Inaktiv)
- Die angezeigte Istposition ist undefiniert

Jedoch sind die Informationen des ursprünglichen Motors sowie die zugehörigen Referenzdaten im Antriebsregler gespeichert. Nach Ausschalten des Antriebsreglers, Anschluss des korrekten Motors und Neustart des Antriebsreglers wird die Referenz wiederhergestellt und die Istposition wird korrekt angezeigt (Voraussetzungen: Multiturn-Absolutwertencoder, referenzierte Achse und Default-Einstellung zur Referenzerhaltung 146 = 0: Normal).

Master-Encoder

Istpositionen des Master-Encoders werden in der Applikation Drive Based Synchronous für den Synchronbetrieb verwendet.

In allen Applikationen außer der Applikation Drive Based Center Winder kann die Istposition des Master-Encoders verwendet werden, um die Position eines weiteren, an die Maschine angebauten Encoders an die Steuerung weiterzugeben. Der Antriebsregler übergibt die Position von der Encoderschnittstelle an den jeweiligen Feldbus.

Master-Encoder verhalten sich ähnlich wie Positionsencoder. In bestimmten Fällen verliert ein Master-Encoder seine Referenz und sein Zustand wechselt von G89 = 1: Aktiv zu G89 = 0: Inaktiv.

Normaler Betrieb (Master-Encoder)

Während des normalen Betriebs können Encoderstörungen zum Verlust der Referenz führen.

Ursache		Prüfung und Maßnahme
Ereignis 77: Masterencoder	Encoderstörung	Istposition des Master-Encoders ist undefiniert, Wiederherstellung der Referenz ist nicht möglich: Master-Encoder neu referenzieren

Tab. 9: Referenzverlust des Master-Encoders im normalen Betrieb

Ändern von Parametern (Master-Encoder)

Das Ändern einzelner Parameter oder das Übertragen einer neuen Konfiguration mit geänderten Einstellungen kann zum Verlust der Referenz führen.

Ursache		Prüfung und Maßnahme
Ändern von Parametern	Geändertes Achsmodell	Istposition des Master-Encoders ist undefiniert, wenn einer der folgenden Parameter geändert wurde: G30 Verfahrbereich Master G40 Umlauflänge Master G47 Zähler Master-Wegfaktor G48 Nenner Master-Wegfaktor G104 Masterencoder Wiederherstellung der Referenz ist nicht möglich: Master-Encoder neu referenzieren
Ändern von Parametern	Geänderte Encoderschnittstelle	Istposition des Master-Encoders ist undefiniert, wenn ein Parameter der H-Gruppe geändert wurde. Wiederherstellung der Referenz ist nicht möglich: Master-Encoder neu referenzieren

Tab. 10: Referenzverlust des Master-Encoders durch Parameteränderungen

Neustart des Antriebsreglers (Master-Encoder)

In Abhängigkeit von Encoderart und Methode zur Referenzerhaltung (G35) wird nach einem Neustart die Referenz eines zuvor referenzierten Master-Encoders wiederhergestellt oder gelöscht.

Per Default (G35 = 0: Normal) bleibt bei einem Multiturn-Absolutwertencoder die Referenz nach einem Neustart erhalten, sofern mit diesem Encoder referenziert wurde. In allen anderen Fällen wird die Referenz gelöscht, sobald der Antriebsregler ausgeschaltet wird.

Die Methode zur Referenzerhaltung kann in G35 angepasst werden. Neben der Default-Einstellung stehen folgende weitere Optionen zur Verfügung:

- Referenz bleibt erhalten, wenn der Messbereich den gesamten Verfahrbereich abdeckt
- Referenz bleibt erhalten, solange die Positionsänderung im ausgeschalteten Zustand kleiner ist als das Referenzerhaltungsfenster (I48)
- Referenz bleibt unabhängig vom Vorhandensein eines Encoders erhalten
- Referenz bleibt unabhängig vom Typ des Encoders erhalten
- Referenz wird beim Ausschalten des Antriebsreglers gelöscht

6.6 Gerätesteuerung Drive Based

Die Gerätesteuerung Drive Based ist an das DRIVECOM-Profil Antriebstechnik 21 angelehnt; dieses Profil beschreibt den Steuerungsablauf eines Antriebsreglers anhand einer Gerätezustandsmaschine. Dabei repräsentiert jeder Gerätezustand ein bestimmtes Verhalten, das ausschließlich durch definierte Ereignisse geändert werden kann. Diese Ereignisse sind einzelnen Zustandsübergängen zugeordnet.

Einige der an die Zustandsübergänge gekoppelten Bedingungen und Reaktionen sind anwenderspezifisch beeinflussbar – beispielsweise ist es möglich, das Ende eines Schnellhalts oder einer Freigabeverzögerungen auf den jeweiligen Anwendungsfall zugeschnitten zu definieren (siehe Assistent Gerätesteuerung Drive Based).

Nachfolgende Kapitel beschreiben die Gerätezustände sowie die damit verbundenen möglichen Zustandswechsel. Darüber hinaus erfahren Sie, ob und welche Maßnahmen Ihrerseits notwendig sind, um die einzelnen Gerätezustände zu erreichen und welche anwenderspezifischen Faktoren Sie selbst parametrieren können.

6.6.1 Gerätezustandsmaschine Drive Based

Die Gerätezustandsmaschine beschreibt die unterschiedlichen Gerätezustände des Antriebsreglers samt möglicher Zustandswechsel.

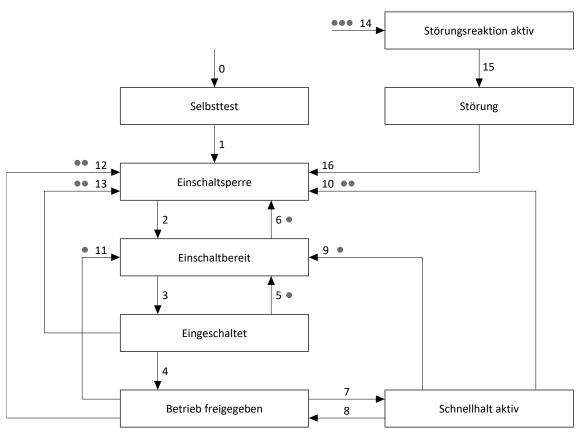


Abb. 39: Gerätezustandsmaschine Drive Based: Gerätezustände und Zustandswechsel

Prioritätsstufen sind in Form von Punkten gekennzeichnet. Je mehr Punkte ein Zustandswechsel hat, desto höher ist seine Priorität. Dementsprechend hat ein Zustandswechsel ohne Punkte die geringste Priorität.

6.6.2 Zustände, Übergänge und Bedingungen

Alle Zustände, die die Gerätesteuerung Drive Based vorsieht, sind durch bestimmte Merkmale gekennzeichnet. Ein Zustand geht entweder automatisch in einen anderen über oder bedarf gewisser Aktionen durch den Anwender. Daneben existieren Übergangsbedingungen, die Sie über den Assistent Gerätesteuerung Drive Based auf Ihren Anwendungsfall zugeschnitten parametrieren können.

Parameter E48 zeigt den aktuellen Gerätezustand eines Antriebsreglers.

6.6.2.1 Legende

In den Beschreibungen der Zustände, Übergänge und Bedingungen werden folgende Begriffe verwendet:

Begriff	Bedeutung
Freigabe aktiv	Freigabe ist aktiv (A306 = 1: Aktiv, Quelle: Klemme X1) UND, wenn Sie mit einer Zusatzfreigabe arbeiten: Zusatzfreigabe ist aktiv (A300 = 1: Aktiv, Quelle: A60)
Freigabe ist inaktiv	Freigabe ist inaktiv (A306 = 0: Inaktiv, Quelle: Klemme X1) ODER, wenn Sie mit einer Zusatzfreigabe arbeiten: Zusatzfreigabe ist inaktiv (A300 = 0: Inaktiv, Quelle: A60)
Schnellhalt bei Freigabe-Aus aktiv	Schnellhalt bei Freigabe-Aus ist aktiv (A44 = 1: Aktiv)
Schnellhalt bei Freigabe-Aus inaktiv	Schnellhalt bei Freigabe-Aus ist inaktiv (A44 = 0: Inaktiv)
Schnellhalt-Ende	Stillstand erreicht ODER Maximale Schnellhaltdauer ist abgelaufen (A39) ODER A45 = 1: Ohne Stop UND Schnellhaltanforderung ist inaktiv
Schnellhaltdauer abgelaufen	Maximale Schnellhaltdauer ist abgelaufen (A39)
Autostart aktiv	Autostart ist aktiv (A34 = 1: Aktiv)
Autostart inaktiv	Autostart ist inaktiv (A34 = 0: Inaktiv)

Tab. 11: Zustände, Übergänge und Bedingungen: Begriffe

6.6.2.2 Selbsttest

Merkmale

- Antriebsregler und Sicherheitsmodul werden initialisiert und getestet
- Leistungsteil, Antriebs- und Einschaltfunktionen sind gesperrt
- Bremsen bleiben eingefallen

Übergang zu Einschaltsperre (1)

Der Antriebsregler wechselt nach Initialisierung und erfolgreich abgeschlossenem Selbsttest (typisch ca. 30 s) automatisch in den Zustand Einschaltsperre.

Übergang zu Störungsreaktion aktiv (14), Priorität: • • •

6.6.2.3 Einschaltsperre

Merkmale

- Initialisierung ist beendet
- Selbsttest wurde erfolgreich abgeschlossen
- Leistungsteil, Antriebs- und Einschaltfunktionen sind gesperrt
- Bremsen bleiben bei inaktivem Lüft-Override eingefallen oder fallen ein

Mögliche Ursachen für eine Einschaltsperre sind:

- 1. Freigabe ist aktiv (A306, A300) und Autostart ist inaktiv (A34); Ursache nur im Zustand Einschaltsperre)
- 2. Fehlende oder nicht ausreichende Netzspannung/Zwischenkreiseinspeisung
- 3. Achsumschaltung ist aktiv
- 4. Projektierter IGB-Motionbus ist nicht aktiv
- 5. Sicherheitsfunktion STO ist aktiv
- Steuertafel oder Lokalbetrieb ist aktiv (Ursache nur in den Zuständen Einschaltsperre, Einschaltbereit und Eingeschaltet)

Die genaue Ursache für eine Einschaltsperre entnehmen Sie Parameter E49.

Anwendungsspezifische Parametrierung

A34 Autostart:

Ist dieser Parameter aktiviert, wechselt der Antriebsregler bei einer anstehenden Freigabe direkt in den Zustand Einschaltbereit.

⚠ WARNUNG!

Personen- und Sachschaden durch unerwarteten Motoranlauf!

Aktivieren Sie den Autostart nur dann, wenn die für die betreffende Anlage oder Maschine geltenden Normen und Vorschriften einen direkten Wechsel in den Gerätezustand Einschaltbereit zulassen.

• Kennzeichnen Sie gemäß EN 61800-5-1 einen aktivierten Autostart eindeutig auf der Anlage und in der zugehörigen Anlagendokumentation.

Übergang zu Einschaltbereit (2)

Freigabe inaktiv UND keine Ursache für eine Einschaltsperre

ODER

Freigabe aktiv UND Autostart aktiv UND keine Ursache für eine Einschaltsperre

Übergang zu Störungsreaktion aktiv (14), Priorität: ● ● ●

6.6.2.4 Einschaltbereit

Merkmale

- Leistungsteil und Antriebsfunktion sind gesperrt
- Antriebsregler ist einschaltbereit
- Bremsen bleiben bei inaktivem Lüft-Override eingefallen oder fallen ein

Anwendungsspezifische Parametrierung

Die Gerätezustandsmaschine Drive Based unterstützt neben dem Freigabesignal an Klemme X1 die Verwendung einer Zusatzfreigabe, beispielsweise über einen Feldbus oder über digitale Eingänge. Freigabe- und Zusatzfreigabesignal sind durch eine UND-Verknüpfung gekoppelt. Der Antriebsregler wird in diesem Fall erst dann freigegeben, wenn der Wert beider Signale HIGH ist.

A60 Quelle Zusatzfreigabe:

Wenn Sie mit einer Zusatzfreigabe arbeiten, definieren Sie in diesem Parameter die Quelle des zusätzlichen Signals. Bei einer Feldbusanbindung liefert A180 Bit 0 das Zusatzfreigabesignal.

Übergang zu Eingeschaltet (3)

Freigabe aktiv

Übergang zu Einschaltsperre (6), Priorität:

Ursache für eine Einschaltsperre

Übergang zu Störungsreaktion aktiv (14), Priorität: • • •

Störung mit oder ohne Störungsreaktion

6.6.2.5 Eingeschaltet

Merkmale

- Leistungsteil wird für den Betrieb vorbereitet
- Antriebsfunktion ist gesperrt, Sollwerte werden nicht verarbeitet
- Bremsen bleiben bei inaktivem Lüft-Override eingefallen oder fallen ein

Übergang zu Betrieb freigegeben (4)

Freigabe aktiv

Übergang zu Einschaltbereit (5), Priorität:

Freigabe inaktiv

Übergang zu Einschaltsperre (13), Priorität: ••

Ursache für eine Einschaltsperre

Übergang zu Störungsreaktion aktiv (14), Priorität: ● ● ●

6.6.2.6 Betrieb freigegeben

Information

SS1 und SS2 werden im Zustand Operation enabled ausgeführt. SS2 bleibt immer in diesem Zustand. Die Bremse fällt bei SS2 nicht ein, damit eine Weiterfahrt ohne Wartezeit möglich ist. SS1 führt zu Übergang 9.

Merkmale

- Leistungsteil ist eingeschaltet
- Antriebsfunktion ist freigegeben, Sollwerte werden verarbeitet
- Bremsen werden mit dem ersten aktiven Bewegungskommando gelüftet

Anwendungsspezifische Parametrierung

A43 Ausschaltverzögerung X1-Freigabe:

Wenn das Freigabesignal an Klemme X1 von einem Sicherheitsschaltgerät durch OSSD-Testimpulse beeinflusst wird, kann der Antriebsregler diese Signale nicht von einem funktionalen Freigabe-Aus unterscheiden. Eine Fehlinterpretation der Testimpulse kann umgangen werden, indem Sie in diesem Parameter eine Verzögerungszeit definieren, die größer ist als die Dauer der Testimpulse. Ein unerwünschter Wechsel des Antriebsreglers in die Zustände Einschaltbereit oder Schnellhalt aktiv (siehe Parameter A44) wird somit unterdrückt.

A44 Schnellhalt bei Freigabe-Aus:

Dieser Parameter bewirkt, dass ein Antrieb bei einer inaktiven Freigabe mit einem Schnellhalt gestoppt wird. Der Antriebsregler wechselt in diesem Fall in den Zustand Schnellhalt aktiv. Ist Parameter A44 nicht aktiviert, wechselt der Antrieb bei einem Freigabe-Aus in den Zustand Einschaltbereit. In diesem Fall wird der Antrieb ungesteuert stillgesetzt, das Leistungsteil wird gesperrt und die Achsbewegung nicht mehr durch den Antriebsregler gesteuert.

A29 Schnellhalt bei Störung

Dieser Parameter bewirkt, dass ein Antrieb bei einer Störung mit einem Schnellhalt gestoppt wird. Der Antriebsregler wechselt in diesem Fall in den Zustand Schnellhalt aktiv. Ist Parameter A29 nicht aktiviert, wechselt der Antrieb bei einer Störung in den Zustand Störungsreaktion aktiv. In diesem Fall wird der Antrieb ungesteuert stillgesetzt, das Leistungsteil wird gesperrt und die Achsbewegung nicht mehr durch den Antriebsregler gesteuert.

Übergang zu Schnellhalt aktiv (7)

Anforderung eines Schnellhalts

ODER

Freigabe inaktiv UND Schnellhalt bei Freigabe-Aus aktiv

Übergang zu Einschaltbereit (11), Priorität:

Freigabe inaktiv UND Schnellhalt bei Freigabe-Aus inaktiv

Übergang zu Einschaltsperre (12), Priorität: ● ●

Ursache für eine Einschaltsperre

Übergang zu Störungsreaktion aktiv (14), Priorität: • • •

6.6.2.7 Schnellhalt aktiv

Merkmale

- Leistungsteil ist eingeschaltet, Antriebsfunktion ist freigegeben
- Schnellhalt wird ausgeführt
- Bremsen bleiben gelüftet, Bremseneinfall am Ende des Schnellhalts oder bei Stillstand
- Bremseneinfall beendet den Schnellhalt

Anwendungsspezifische Parametrierung

- A39 Maximale Schnellhaltdauer bei Freigabe-Aus:
 Wird der Antrieb bei einer inaktiven Freigabe mit einem Schnellhalt gestoppt (siehe A44), definieren Sie in diesem Parameter die maximale Zeitspanne, nach deren Ablauf das Leistungsteil ausgeschaltet wird.
- A45 Schnellhalt-Ende:

Definieren Sie in diesem Parameter, ob ein Schnellhalt mit dem Stillstand des Antriebs oder durch das Abbrechen der Schnellhaltanforderung als beendet gilt.

A62 Quelle /Schnellhalt:
 Definieren Sie in diesem Parameter, wie ein gewünschter Schnellhalt ausgelöst wird.

Übergang zu Betrieb freigegeben (8)

Keine Schnellhaltanforderung

UND

Freigabe aktiv

UND

Schnellhalt-Ende

Übergang zu Einschaltbereit (9), Priorität:

Freigabe inaktiv UND Schnellhalt bei Freigabe-Aus inaktiv

ODER

Freigabe inaktiv UND Schnellhalt-Ende

Übergang zu Einschaltsperre (10), Priorität:

Ursache für eine Einschaltsperre

Übergang zu Störungsreaktion aktiv (14), Priorität: • • •

6.6.2.8 Störungsreaktion aktiv

Merkmale

- Antriebsfehler ist aufgetreten
- Störungsreaktion wird abhängig vom jeweiligen Störungsereignis ausgeführt
- Bremsen werden abhängig von der jeweiligen Störungsreaktion angesteuert

Anwendungsspezifische Parametrierung

A29 Schnellhalt bei Störung:

Ist dieser Parameter aktiviert, wird der Antrieb im Störfall – sofern möglich – mit einem Schnellhalt gestoppt; ist der Parameter inaktiv, wird die Bewegung der Achse nicht mehr durch den Antriebsregler gesteuert.

Übergang zu Störung (15)

Störungsreaktion abgeschlossen

6.6.2.9 Störung

Merkmale

- Antriebsfehler ist aufgetreten
- Störungsreaktion ist abgeschlossen
- Leistungsteil, Antriebs- und Einschaltfunktionen sind gesperrt
- Bremsen fallen bei inaktivem Lüft-Override ein

Übergang zu Einschaltsperre (16)

Nach Beseitigung der Störungsursache und anschließender Quittierung der Störungsmeldung wechselt der Antriebsregler automatisch in Einschaltsperre.

6.7 Bewegungskommandos

Die Betriebsarten der Applikation verfügen über spezielle Bewegungskommandos, die an den PLCopen-Standard angelehnt sind und um 3 herstellerspezifische Bewegungskommandos (MC_DoNothing, MC_MoveSpeed und MC_Winder) ergänzt werden. Jedes Bewegungskommando – mit Ausnahme von MC_Stop – kann während der Ausführung unterbrochen werden. Um ein Bewegungskommando ausführen zu können, müssen folgende Voraussetzungen erfüllt sein:

- Lokal- und Tippbetrieb dürfen nicht aktiviert sein
- Antriebsregler darf sich nicht im Gerätezustand Einschaltsperre oder Störung befinden

Kommando	Beschreibung	Regelungsart	Notwendige Bewegungsgrößen
0: MC_DoNothing	_	_	_
8: MC_MoveSpeed	Achse fährt endlos mit Sollgeschwindigkeit (ohne Positionsregelung)	Geschwindigkeit	Geschwindigkeit, OverrideBeschleunigungVerzögerungRuck
4: MC_MoveVelocity	Achse fährt endlos mit Sollgeschwindigkeit (mit Positionsregelung)	Position	 Geschwindigkeit, Override Beschleunigung Verzögerung Ruck
9: MC_TorqueControl	Achse fährt endlos mit Solldrehmoment/-kraft	Drehmoment/Kraft	Drehmoment/Kraft
2: MC_MoveRelative	Achse fährt eine relative Distanz; Sollposition ist relativ zur Istposition bei Kommandostart	Position	 Position Geschwindigkeit, Override Beschleunigung Verzögerung Ruck
3: MC_MoveAdditive	Achse fährt eine relative Distanz; Sollposition ist relativ zur Sollposition des vorigen Bewegungskommandos	Position	 Position Geschwindigkeit, Override Beschleunigung Verzögerung Ruck
1: MC_MoveAbsolute	Achse fährt auf eine absolute Sollposition (Referenzierung notwendig)	Position	 Position Geschwindigkeit, Override Beschleunigung Verzögerung Ruck

Kommando	Beschreibung	Regelungsart	Notwendige Bewegungsgrößen
6: MC_Home	Achse wird referenziert	Abhängig vom gewählten Referenziertyp	Geschwindigkeit,Override
			Beschleunigung
			 Verzögerung
			Ruck
			 Drehmoment/Kraft
11: MC_Halt	Achse wird angehalten;	Geschwindigkeit	Verzögerung
	nächstes Kommando vor Stillstand ausführbar		Ruck
5: MC_Stop	Achse wird bis zum Stillstand	Geschwindigkeit	 Verzögerung
	angehalten; nächstes Kommando nach Stillstand ausführbar		■ Ruck
30: MC_Winder	Achse fährt entsprechend	Geschwindigkeit	 Materialgeschwindigkeit
	des Steuer- oder Regelverfahrens des		 Materialzugkraft
	Zentralwicklers (L00)		 Beschleunigung
			 Verzögerung
			Ruck

Tab. 12: Drive Based Center Winder: verfügbare Bewegungskommandos

Detaillierte Informationen zu den Bewegungskommandos entnehmen Sie dem zugehörigen Handbuch (siehe Weiterführende Informationen [*) 164]).

6.8 Elektronisches Typenschild

STÖBER Synchron-Servomotoren sind in der Regel mit EnDat-Encodern ausgestattet, die einen speziellen Speicher zur Verfügung stellen. Dieser Speicher beinhaltet das elektronische Typenschild, d. h., sämtliche typrelevanten Stammdaten sowie spezielle mechanische und elektronische Werte eines Motors.

Betreiben Sie einen Antriebsregler mit einem STÖBER Synchron-Servomotor und einem EnDat-Encoder, wird das elektronische Typenschild bei einer bestehenden Online-Verbindung des Antriebsreglers ausgelesen und sämtliche Daten übertragen. Konkret handelt es sich um Auftragsdaten, Stromreglerwerte, Motorparameter, Daten zu Motortemperatursensoren, Bremsen, Kommutierungsoffset sowie die gemessene elektromotorische Kraft. Diese können im Nachhinein manuell optimiert und neu im Antriebsregler gespeichert werden.

Bei jedem Neustart eines Antriebsreglers prüft dieser, ob der projektierte Motor, gegebenenfalls die Bremse, der Motortemperatursensor oder die Kommutierung geändert wurden. Ist dies der Fall, werden die geänderten Daten ausgelesen. Die im Antriebsregler gespeicherten Optimierungen bleiben, sofern möglich, erhalten.

Das automatische Auslesen des elektronischen Typenschilds ist werksseitig aktiviert (B04 Elektronisches Typenschild = 64: Aktiv).

6.9 Schleppabstand-Überwachung

In Applikationen des Typs Drive Based Center Winder können Sie bei aktiver Positionsregelung den Schleppabstand der Achse überwachen, um frühzeitig zunehmende Positionsabweichungen zu erkennen. Die Überwachung des Schleppabstands ermöglicht Ihnen schnell zu reagieren, bevor es z. B. bei Schwergängigkeit oder einer mechanischen Blockade des Abtriebs zu einem Sachschaden kommen kann.

Zur Überwachung des Schleppabstands wird die Differenz zwischen der Istposition der Achse und Sollposition x2_{set} der Regelung gebildet und mit dem maximal zulässigen Schleppabstand verglichen (Istposition: I80; Sollposition: I96; zulässiger Schleppabstand: I21; Ergebnis: I187). Wenn der zulässige Schleppabstand überschritten wird, wird Ereignis 54: Schleppabstand mit entsprechendem Schutzlevel ausgelöst (Schutzlevel: U22).

7 Anhang

7.1 Standard-Mapping Drive Based Center Winder

Information

Bei Feldbuskommunikation über PROFINET erfolgt die Verarbeitung der Prozessdaten in manchen Steuerungen WORDorientiert (16 Bit). Bei Applikationen vom Typ Drive Based ist das Standard-Mapping passend vorbelegt. Berücksichtigen Sie bei Änderungen am Standard-Mapping den Datentyp der Parameter, die Sie dem Mapping hinzufügen oder aus dem Mapping entfernen.

Wenn Sie Parameter mit Datentyp BYTE oder INT8 (8 Bit) hinzufügen oder entfernen, kann dies zu Problemen in den Datenstrukturen der Steuerung führen. Nutzen Sie gegebenenfalls Parameter A101 Dummy-Byte, um entstehende 8-Bit-Lücken in den Prozessdaten zu füllen und die notwendige Datenstruktur für die Steuerung zu realisieren.

STÖBER 7 | Anhang

7.1.1 SD6: Empfangs-Prozessdaten Drive Based Center Winder

Nachfolgende Tabelle zeigt das Standard-Mapping für die Empfangs-Prozessdaten in der Applikation Drive Based Center Winder. Bei Feldbuskommunikation via PROFINET erfolgt das Prozessdaten-Mapping über Parameter A90 – A92, bei Feldbuskommunikation via EtherCAT erfolgt das Prozessdaten-Mapping über Parameter A225 – A228. Bei Bedarf kann das Standard-Mapping individuell angepasst werden.

Byte	Datentyp	Name	Parameter
0	BYTE	Steuer-Byte Gerät	A180
1	BYTE	Steuer-Byte Kommando	1.J37
2 – 3	WORD	Steuerwort Applikation	1210
4	INT8	Kommando	1.J40
5	INT8	Motion-ID	1.J41
6 – 9	INT32	Position	1.J42
10 – 13	REAL32	Geschwindigkeit 1	1.J43
14 – 17	REAL32	Geschwindigkeits-Override	1.J56
18 – 21	REAL32	Soll-Drehmoment/-Kraft	1.G469
22 – 23	WORD	Steuerwort Zentralwickler	1.L150
24 – 27	REAL32	Durchmesser-Sensor-Istwert	1.L25
28 – 31	REAL32	Material-Sollgeschwindigkeit	1.L405
32 – 35	REAL32	Material-Istgeschwindigkeit	1.L450
36 – 39	REAL32	Material-Sollzugkraft	1.L496

Tab. 13: SD6: Empfangs-Prozessdaten (Standard-Mapping)

7.1.2 SD6: Sende-Prozessdaten Drive Based Center Winder

Nachfolgende Tabelle zeigt das Standard-Mapping für die Sende-Prozessdaten in der Applikation Drive Based Center Winder. Bei Feldbuskommunikation via PROFINET erfolgt das Prozessdaten-Mapping über Parameter A94 – A96, bei Feldbuskommunikation via EtherCAT erfolgt das Prozessdaten-Mapping über Parameter A233 – A236. Bei Bedarf kann das Standard-Mapping individuell angepasst werden.

Byte	Datentyp	Name	Parameter
0	ВҮТЕ	Status-Byte Gerät	E200[0]
1	BYTE	Status-Byte Gerät	E200[1]
2-3	WORD	Statuswort 2	E201
4	ВҮТЕ	Status-Byte Applikation	1.1212
5	ВҮТЕ	Status-Byte Kommando	1.J39
6 – 7	WORD	Statuswort Applikation	1200
8 – 11	INT32	Istposition	1.180
12 – 15	REAL32	Istgeschwindigkeit	1.188
16 – 19	REAL32	Istmoment/-kraft	E90
20 – 21	WORD	Statuswort anwenderdefiniert	A67
22	INT8	Betriebszustand	E80
23	INT8	Gerätezustand	E48
24 – 25	WORD	Statuswort Zentralwickler	1.L155
26 – 29	REAL32	Durchmesser gefiltert	1.L29

Tab. 14: SD6: Sende-Prozessdaten (Standard-Mapping)

7.2 Weiterführende Informationen

Die nachfolgend gelisteten Dokumentationen liefern Ihnen weitere relevante Informationen zur 6. STÖBER Antriebsreglergeneration. Den aktuellen Stand der Dokumentationen finden Sie in unserem Download-Center unter: http://www.stoeber.de/de/downloads/.

Geben Sie die ID der Dokumentation in die Suche ein.

Titel	Dokumentation	Inhalte	ID
Antriebsregler SD6	Handbuch	Systemaufbau, technische Daten, Projektierung, Lagerung, Einbau, Anschluss, Inbetriebnahme, Betrieb, Service, Diagnose	442425
Kommunikation PROFINET – SD6	Handbuch	Einbau, elektrische Installation, Datentransfer, Inbetriebnahme, Diagnose, weiterführende Informationen	442709
Kommunikation EtherCAT – SD6	Handbuch	Einbau, elektrische Installation, Datentransfer, Inbetriebnahme, Diagnose, weiterführende Informationen	442515
Sicherheitstechnik SE6 – sichere Antriebsüberwachung über Klemmen	Handbuch	Technische Daten, Installation, Inbetriebnahme, Diagnose	442795
Sicherheitstechnik ST6 – STO über Klemmen	Handbuch	Technische Daten, Installation, Inbetriebnahme, Diagnose, weiterführende Informationen	442477
Bewegungskommandos	Handbuch	Steuer- und Statusinformationen, Verweigerung und Begrenzungen, Bewegung	443348

7.3 Formelzeichen

Formelzeichen	Einheit	Erklärung
F	N	Kraft
M	Nm	Drehmoment
M ₁	Nm	Drehmoment am Getriebeeintrieb
M ₂	Nm	Drehmoment am Getriebeabtrieb
M _{Rdyn}	Nm/1000 min ⁻¹	Dynamisches Reibmoment der Achse
M_{Rstat}	Nm	Statisches Reibmoment der Achse
n	min ⁻¹	Drehzahl
n ₁	min ⁻¹	Drehzahl am Getriebeeintrieb
n ₂	min ⁻¹	Drehzahl am Getriebeabtrieb

7.4 Abkürzungen

Abkürzung	Bedeutung
Al	Analog Input (analoger Eingang)
ALT	Alternative
CAN	Controller Area Network
СВ	Controller Based
CiA	CAN in Automation
CNC	Computerized Numerical Control (rechnergestützte numerische Steuerung)
DI	Digital Input (digitaler Eingang)
EtherCAT	Ethernet for Control Automation Technology
IGB	Integrierter Bus
LinM	Linearmotor
LS	Limit Switch (Endschalter)
LSB	Least Significant Bit (kleinstwertiges Bit)
М	Motor
M/F	Drehmoment oder Kraft
MEnc	Motorencoder
PEnc	Positionsencoder
PROFINET	Process Field Network
RS	Reference Switch (Referenzschalter)
S	Switch (Schalter)
SPS	Speicherprogrammierbare Steuerung
ZP	Zero Pulse (Nullimpuls)

8 | Kontakt STÖBER

8 Kontakt

8.1 Beratung, Service, Anschrift

Wir helfen Ihnen gerne weiter!

Auf unserer Webseite stellen wir Ihnen zahlreiche Informationen und Dienstleistungen rund um unsere Produkte bereit: http://www.stoeber.de/de/service

Für darüber hinausgehende oder individuelle Informationen, kontaktieren Sie unseren Beratungs- und Support-Service: http://www.stoeber.de/de/support

Sie benötigen unseren System-Support:

Tel. +49 7231 582-3060 systemsupport@stoeber.de

Sie benötigen ein Ersatzgerät:

Tel. +49 7231 582-1128 replace@stoeber.de

So erreichen Sie unsere 24 h Service-Hotline:

Tel. +49 7231 582-3000

Unsere Anschrift lautet: STÖBER Antriebstechnik GmbH + Co. KG Kieselbronner Straße 12 75177 Pforzheim, Germany

8.2 Ihre Meinung ist uns wichtig

Diese Dokumentation erstellten wir nach bestem Wissen mit dem Ziel, Sie beim Auf-und Ausbau Ihres Know-hows rund um unser Produkt nutzbringend und effizient zu unterstützen.

Ihre Anregungen, Meinungen, Wünsche und konstruktive Kritik helfen uns, die Qualität unserer Dokumentation sicherzustellen und weiterzuentwickeln.

Wenn Sie uns aus genannten Gründen kontaktieren möchten, freuen wir uns über eine E-Mail an: documentation@stoeber.de

Vielen Dank für Ihr Interesse. Ihr STÖBER Redaktionsteam

2/2025 | ID 443345.03

8.3 Weltweite Kundennähe

Wir beraten und unterstützen Sie mit Kompetenz und Leistungsbereitschaft in über 40 Ländern weltweit:

STOBER AUSTRIA

www.stoeber.at +43 7613 7600-0 sales@stoeber.at

STOBER FRANCE

www.stober.fr +33 478 98 91 80 sales@stober.fr

STOBER ITALY

www.stober.it +39 02 93909570 sales@stober.it

STOBER KOREA

www.stober.kr +82 10 5681 6298 sales@stober.kr

STOBER SWITZERLAND

www.stoeber.ch +41 56 496 96 50 sales@stoeber.ch

STOBER TURKEY

www.stober.com +90 216 510 2290 sales-turkey@stober.com

STOBER USA

www.stober.com +1 606 759 5090 sales@stober.com

STOBER CHINA

www.stoeber.cn +86 512 5320 8850 sales@stoeber.cn

STOBER Germany

www.stoeber.de +49 7231 582-0 sales@stoeber.de

STOBER JAPAN

www.stober.co.jp +81-3-5875-7583 sales@stober.co.jp

STOBER SWEDEN

www.stober.com +46 702 394 675 neil.arstad@stoeber.de

STOBER TAIWAN

www.stober.tw +886 4 2358 6089 sales@stober.tw

STOBER UK

www.stober.co.uk +44 1543 458 858 sales@stober.co.uk

Abbildungsverzeichnis

Abb. 1	DS6: Programmoberfläche	12
Abb. 2	DriveControlSuite: Navigation über Textlinks und Symbole	14
Abb. 3	Betriebsart Zentralwickler: Signalflüsse	45
Abb. 4	Dynamisches Reibmoment MRdyn	52
Abb. 5	Statisches Reibmoment MRstat	53
Abb. 6	Beispiel: MRdyn berechnen	53
Abb. 7	Beispiel: MRstat berechnen	53
Abb. 8	Massenträgheitsmoment J (Vollzylinder)	54
Abb. 9	Massenträgheitsmoment J (Hohlzylinder)	54
Abb. 10	Betriebsart Kommando: Signalflüsse	65
Abb. 11	Dynamisches Reibmoment MRdyn	73
Abb. 12	Statisches Reibmoment MRstat	74
Abb. 13	Beispiel: MRdyn berechnen	74
Abb. 14	Beispiel: MRstat berechnen	74
Abb. 15	Massenträgheitsmoment J (Vollzylinder)	75
Abb. 16	Massenträgheitsmoment J (Hohlzylinder)	75
Abb. 17	Komponenten und Konfigurationsschritte	89
Abb. 18	Signalflussplan: analoger Eingang Al1 (F116 = 0: -10V bis 10V)	92
Abb. 19	Signalflussplan: analoger Eingang Al1 (F116 = 1: 0 bis 20mA)	92
Abb. 20	Signalflussplan: analoger Eingang Al1 (F116 = 2: 4 bis 20mA)	92
Abb. 21	Signalflussplan: analoger Eingang AI2	93
Abb. 22	Signalflussplan: analoger Eingang AI3	93
Abb. 23	Zusatzfunktion Zähler: Beispiel	94
Abb. 24	Motorpotentiometer: lineare und schrittweise Berechnung	96
Abb. 25	Zentralwickler: Arten	103
Abb. 26	Aufbau: Zentralwickler mit Geschwindigkeitssteuerung	105
Abb. 27	Aufbau: Zentralwickler mit Geschwindigkeitsregelung	105
Abb. 28	Aufbau: Zentralwickler mit Zugkraftsteuerung	106
Abb. 29	Aufbau: Zentralwickler mit Zugkraftregelung	107
Abb. 30	Aufbau: Zentralwickler mit Tänzerpositionsregelung	108
Abb. 31	Zentralwickler: Aufwickeln positiv (Wickeln von oben)	113
Abb. 32	Zentralwickler: Aufwickeln negativ (Wickeln von unten)	113
Abb. 33	Zentralwickler: Abwickeln positiv	114
Abb. 34	Zentralwickler: Abwickeln negativ	114
Abb. 35	Zentralwickler: Reibmoment der Achse	115

Abb. 36	Zentralwickler: Massenträgheitsmoment der Achse	115
Abb. 37	Endlos-rotatorische Bewegung: Rundtisch	118
Abb. 38	HW-Endschalterspeicher	122
Abb. 39	Gerätezustandsmaschine Drive Based: Gerätezustände und Zustandswechsel	152

Tabellenverzeichnis

Tab. 1	Parametergruppen	15
Tab. 2	Parameter: Datentypen, Parameterarten, mögliche Werte	16
Tab. 3	Parametertypen	17
Tab. 4	Wickelmethoden: erforderliche Bewegungsgrößen	104
Tab. 5	Materialriss-Überwachung: Algorithmus	116
Tab. 6	Referenziermethoden	125
Tab. 7	Referenzverlust der Achse im normalen Betrieb	148
Tab. 8	Referenzverlust der Achse durch Parameteränderungen	149
Tab. 9	Referenzverlust des Master-Encoders im normalen Betrieb	150
Tab. 10	Referenzverlust des Master-Encoders durch Parameteränderungen	151
Tab. 11	Zustände, Übergänge und Bedingungen: Begriffe	153
Tab. 12	Drive Based Center Winder: verfügbare Bewegungskommandos	159
Tab. 13	SD6: Empfangs-Prozessdaten (Standard-Mapping)	163
Tab. 14	SD6: Sende-Prozessdaten (Standard-Mapping)	163

STÖBER Glossar

Glossar

Broadcast-Domain

Logischer Verbund von Netzwerkgeräten in einem lokalen Netzwerk, der alle Teilnehmer über Broadcast erreicht.

elektronisches Typenschild

Die Synchron-Servomotoren sind in der Regel mit Absolutwertencodern ausgestattet, die einen speziellen Speicher zur Verfügung stellen. Dieser Speicher beinhaltet das elektronische Typenschild, d. h. sämtliche typrelevanten Stammdaten sowie spezielle mechanische und elektronische Werte eines Motors. Betreiben Sie einen Antriebsregler mit einem Synchron-Servomotor und einem Absolutwertencoder, wird das elektronische Typenschild bei einer bestehenden Online-Verbindung des Antriebsreglers ausgelesen und sämtliche Motordaten übertragen. Aus diesen Daten ermittelt der Antriebsregler automatisch zugehörige Grenzwerte und Regelparameter.

i2t-Modell

Rechenmodell für die thermische Überwachung.

IPv4-Limited-Broadcast

Art eines Broadcast in einem Netzwerk mit IPv4 (Internet Protocol Version 4). Als Ziel wird die IP-Adresse 255.255.255 angegeben. Der Inhalt des Broadcast wird von einem Router nicht weitergeleitet und ist somit auf das eigene lokale Netzwerk limitiert.

Massenträgheitsmoment

Gibt den Widerstand eines starren Körpers gegenüber einer Änderung seiner Rotationsbewegung um eine gegebene Achse an (Drehmoment geteilt durch Winkelbeschleunigung).

Materialgeschwindigkeit

Geschwindigkeit, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt wird.

Material-Istgeschwindigkeit

Tatsächliche Geschwindigkeit, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt wird.

Material-Istzugkraft

Tatsächliche Zugkraft, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt wird.

Material-Sollgeschwindigkeit

Angestrebte Geschwindigkeit, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt werden soll.

STÖBER

/2025 | 1D 443345.03

Material-Sollzugkraft

Angestrebte Zugkraft, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt werden soll.

Materialzugkraft

Zugkraft, mit der das Material im Wickelprozess auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt wird.

PID-Regler

Universeller Reglertyp mit einem P-, I und D-Anteil. Diese 3 Einstellparameter machen ihn flexibel, sorgen für eine exakte und hoch dynamische Regelung, erfordern im Umkehrschluss jedoch eine Variantenvielfalt. Umso mehr muss auf eine sorgfältige, gut auf die Strecke abgestimmte Auslegung geachtet werden. Anwendungsbereiche dieses Reglertyps sind Regelkreise mit Strecken zweiter und höherer Ordnung, die schnell ausgeregelt werden müssen und keine bleibende Regelabweichung zulassen.

PROFINET

Offener Ethernet-Standard der PROFIBUS Nutzerorganisation e. V. (PNO) für die Automatisierung.

Regelungskaskade

Gesamtmodell der Regelungsstruktur mit den Komponenten Positionsregler, Geschwindigkeitsregler und Stromregler.

Reibmoment

Drehmoment das entsteht, wenn auf einen drehenden Körper Reibungskräfte wirken und seine Drehung hemmen.

Wickel

Einheit aus Wickelhülse und dem darauf befindlichen Material.

Wickeldurchmesser

Durchmesser eines Wickels.

Wickelhülse

Hülse, die im Wickelprozess als Träger für das Material dient und auf die Material aufgewickelt wird bzw. von der Material abgewickelt wird.

Wickelverfahren

Art und Weise, wie ein Material auf eine Wickelhülse aufgewickelt bzw. von einer Wickelhülse abgewickelt wird.

Wickler

Anlage, die ein Aufwickeln oder Abwickeln von Materialien ermöglicht.

Zentralwickler

Anlage, die ein Aufwickeln oder Abwickeln von Materialien ermöglicht und bei der der Wickel über eine Welle angetrieben wird, die sich im Zentrum des Wickels befindet.

02/2025

STÖBER Antriebstechnik GmbH + Co. KG Kieselbronner Str. 12 75177 Pforzheim Germany Tel. +49 7231 582-0 mail@stoeber.de www.stober.com

24 h Service Hotline +49 7231 582-3000