

TwinCAT 3 – blocs fonctionnels pour servo-variateurs de la 6e génération Manuel

fr 05/2024 ID 443372.01



# Table des matières

|   | Table  | des matières                                          | 2   |
|---|--------|-------------------------------------------------------|-----|
| 1 | Avant  | t-propos                                              | . 4 |
| 2 | Inform | nations utilisateur                                   | 5   |
|   | 2.1    | Actualité                                             | . 5 |
|   | 2.2    | Langue originale                                      | . 5 |
|   | 2.3    | Produit décrit                                        | . 5 |
|   | 2.4    | Documentations également applicables                  | . 5 |
|   | 2.5    | Exclusion de responsabilité                           | . 5 |
|   | 2.6    | Conventions typographiques                            | . 6 |
|   | 2.7    | Marques                                               | 6   |
|   | 2.7    |                                                       |     |
| 3 | Consi  | gnes de sécurité                                      | . 7 |
| 4 | Instal | ler la bibliothèque et l'ajouter à un projet          | 8   |
| 5 | Relier | r l'axe CN et le projet API                           | . 9 |
| ~ |        |                                                       |     |
| 6 | BIOCS  | fonctionnels                                          | 10  |
|   | 6.1    | STOBER_BoxName                                        | 11  |
|   |        | 6.1.1 Exemple de code                                 | 12  |
|   | 6.2    | STOBER_Backup_Restore_Initiator                       | 12  |
|   |        | 6.2.1 Exemple de code                                 | 14  |
|   | 6.3    | STOBER_Backup_Restore                                 | 14  |
|   |        | 6.3.1 Utiliser un bloc fonctionnel                    | 16  |
|   |        | 6.3.2 Exemple de code                                 | 18  |
|   | 6.4    | STOBER_MC_HOME                                        | 20  |
|   |        | 6.4.1 Déroulement du référençage                      | 21  |
|   |        | 6.4.2 Exemple de code                                 | 22  |
|   | 6.5    | STOBER_MC_HOME_REF                                    | 23  |
|   |        | 6.5.1 Déroulement du référençage                      | 24  |
|   |        | 6.5.2 Exemple de code                                 | 25  |
|   | 6.6    | STOBER_Action                                         | 26  |
|   |        | 6.6.1 Exemples d'actions sans autorisation requise    | 27  |
|   |        | 6.6.2 Exemple de code                                 | 27  |
|   | 6.7    | STOBER_Power_Action                                   | 28  |
|   |        | 6.7.1 Exemples d'actions nécessitant une autorisation | 29  |
|   |        | 6.7.2 Exemple de code                                 | 30  |
|   | 6.8    | STOBER Phase Test                                     | 31  |
|   |        | 6.8.1 Déroulement du test de phase                    | 32  |
|   |        | 6.8.2 Exemple de code                                 | 33  |
|   |        |                                                       |     |

|    | 6.9    | STOBER_    | PRM_LoadMatrix                             | . 34 |
|----|--------|------------|--------------------------------------------|------|
|    |        | 6.9.1      | Déroulement de la lecture et de l'écriture | . 35 |
|    |        | 6.9.2      | Exemple de code                            | . 35 |
|    | 6.10   | STOBER_    | PRM_LoadMatrix_AMS                         | . 36 |
|    |        | 6.10.1     | Déroulement de la lecture et de l'écriture | . 37 |
|    |        | 6.10.2     | Exemple de code                            | . 37 |
|    | 6.11   | STOBER_    | PRM_LoadMatrix_File                        | . 38 |
|    |        | 6.11.1     | Déroulement de la lecture et de l'écriture | . 39 |
|    |        | 6.11.2     | Exemple de code                            | . 40 |
|    | 6.12   | STOBER_    | PRM_LoadMatrix_File_AMS                    | . 41 |
|    |        | 6.12.1     | Déroulement de la lecture et de l'écriture | . 42 |
|    |        | 6.12.2     | Exemple de code                            | . 43 |
|    | 6.13   | STOBER_    | SDO_Info                                   | . 44 |
|    |        | 6.13.1     | Exemple de code                            | . 45 |
| 7  | Calcul | de l'index | (                                          | . 46 |
| 8  | Diagn  | ostic      |                                            | . 47 |
|    | 8.1    | eFBError   | (ENUM)                                     | . 48 |
| 9  | Annex  | (e         |                                            | . 51 |
|    | 0.1    | Informati  |                                            | Γ1   |
|    | 9.1    | mormati    | ions complementaires                       | . 51 |
|    | 9.2    | Abréviati  | ons                                        | . 52 |
| 10 | Conta  | ct         |                                            | . 53 |
|    | 10.1   | Conseil, s | ervice après-vente, adresse                | . 53 |
|    | 10.2   | Votre avi  | s nous intéresse                           | . 53 |
|    | 10.3   | À l'écoute | e de nos clients dans le monde entier      | . 54 |
|    | _      |            |                                            |      |
|    | Index  | des tablea | aux                                        | . 55 |

# 1 Avant-propos

Les blocs fonctionnels de STOBER représentent de petites unités logicielles fonctionnelles qui vous assistent lors de la mise en service de vos servo-variateurs et en cas d'intervention de maintenance. Vous pouvez les réutiliser dans différents projets dans TwinCAT 3.

Vous trouverez les blocs fonctionnels disponibles sous forme comprimée à l'adresse <u>http://www.stoeber.de/fr/download</u>. Entrez Blocs TwinCAT 3 dans le champ de recherche.

# 2 Informations utilisateur

Pour pouvoir utiliser efficacement les blocs fonctionnels mis à disposition par STOBER, vous devez connaître la technologie de réseau EtherCAT et les systèmes d'automatisation de Beckhoff associés, notamment la programmation avec TwinCAT 3 ainsi que la création et l'édition de la configuration matérielle.

# 2.1 Actualité

Vérifiez si le présent document est bien la version actuelle de la documentation. Vous pouvez télécharger les versions les plus récentes de documents relatives à nos produits sur notre site Web : <a href="http://www.stoeber.de/fr/download">http://www.stoeber.de/fr/download</a>.

# 2.2 Langue originale

La langue originale de la présente documentation est l'allemand ; toutes les versions en langues étrangères ont été traduites à partir de la langue originale.

## 2.3 Produit décrit

La présente documentation est contraignante pour :

les servo-variateurs STOBER de la 6e génération.

## 2.4 Documentations également applicables

Cette documentation complète les manuels EtherCAT pour SD6 ou EtherCAT pour SC6 et SI6 ainsi que le manuel de l'application CiA 402 associé. L'utilisation de la présente documentation est autorisée uniquement en combinaison avec les manuels cités (voir <u>Informations complémentaires [> 51</u>]).

# 2.5 Exclusion de responsabilité

La bibliothèque mise à disposition dans le centre de téléchargement STOBER et les blocs fonctionnels pour TwinCAT 3 qu'elle contient constituent un service gratuit.

STOBER décline toute responsabilité pour leur contenu, fonctionnement et applicabilité dans une machine ou une application concrète.

# 2.6 Conventions typographiques

Certains éléments du texte courant sont représentés de la manière suivante.

| Information importante       | Mots ou expressions d'une importance particulière         |  |
|------------------------------|-----------------------------------------------------------|--|
| Interpolated position mode   | En option : nom de fichier, nom de produit ou autres noms |  |
| Informations complémentaires | Renvoi interne                                            |  |
| http://www.musterlink.de     | Renvoi externe                                            |  |

## Affichages logiciels et écran

Les représentations suivantes sont utilisées pour identifier les différents contenus informatifs des éléments de l'interface utilisateur logicielle ou de l'écran d'un servo-variateur ainsi que les éventuelles saisies utilisateur.

| <b>Menu principal</b><br>Réglages                      | Noms de fenêtres, de boîtes de dialogue et de pages ou boutons cités<br>par l'interface utilisateur, noms propres composés, fonctions |
|--------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|
| <b>Sélectionnez</b><br>Méthode de référençage A        | Entrée prédéfinie                                                                                                                     |
| Mémorisez votre<br><adresse ip="" propre=""></adresse> | Entrée personnalisée                                                                                                                  |
| ÉVÉNEMENT 52 :<br>COMMUNICATION                        | Affichages à l'écran (état, messages, avertissements, dérangements)                                                                   |

Les raccourcis clavier et les séquences d'ordres ou les chemins d'accès sont représentés comme suit.

| [Ctrl], [Ctrl] + [S]      | Touche, combinaison de touches                                  |
|---------------------------|-----------------------------------------------------------------|
| Tableau > Insérer tableau | Navigation vers les menus/sous-menus (entrée du chemin d'accès) |

## 2.7 Marques

Les noms suivants utilisés en association avec l'appareil, ses options et ses accessoires, sont des marques ou des marques déposées d'autres entreprises :

| CANopen <sup>°</sup> ,<br>CiA <sup>°</sup>                                                               | CANopen <sup>®</sup> et CiA <sup>®</sup> sont des marques communautaires déposées de CAN in<br>AUTOMATION e.V., Nuremberg, Allemagne.                                                                                                                       |
|----------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| EtherCAT <sup>°</sup> ,<br>Safety over EtherCAT <sup>°</sup>                                             | EtherCAT <sup>®</sup> et Safety over EtherCAT <sup>®</sup> sont des marques déposées et des technologies brevetées sous licence de Beckhoff Automation GmbH, Allemagne.                                                                                     |
| TwinCAT <sup>°</sup>                                                                                     | TwinCAT <sup>®</sup> est une marque déposée et sous licence de Beckhoff<br>Automation GmbH, Allemagne.                                                                                                                                                      |
| Windows <sup>®</sup> ,<br>Windows <sup>®</sup> 7,<br>Windows <sup>®</sup> 10,<br>Windows <sup>®</sup> 11 | Windows <sup>®</sup> , le logo Windows <sup>®</sup> , Windows <sup>®</sup> XP, Windows <sup>®</sup> 7, Windows <sup>®</sup> 10 et<br>Windows <sup>®</sup> 11 sont des marques déposées de Microsoft Corporation aux États-Unis<br>et/ou dans d'autres pays. |

Toutes les autres marques qui ne sont pas citées ici sont la propriété de leurs propriétaires respectifs.

Les produits enregistrés comme marques déposées ne sont pas identifiés de manière spécifique dans la présente documentation. Il convient de respecter les droits de propriété existants (brevets, marques déposées, modèles déposés).

# 3 Consignes de sécurité

## **AVERTISSEMENT !**

### Danger de mort en cas de non-respect des consignes de sécurité et des risques résiduels !

Le non-respect des consignes de sécurité et des risques résiduels figurant dans la documentation du servo-variateur peut provoquer des accidents entraînant des blessures graves ou la mort.

- Respectez les consignes de sécurité figurant dans la documentation du servo-variateur.
- Tenez compte des risques résiduels lors de l'évaluation des risques relative à la machine ou l'installation.

## **AVERTISSEMENT** !

## Dysfonctionnement de la machine suite à un paramétrage erroné ou modifié !

Si le paramétrage est erroné ou modifié, des dysfonctionnements peuvent survenir sur les machines ou les installations et entraîner des blessures graves ou la mort.

- Respectez les consignes de sécurité figurant dans la documentation du servo-variateur.
- Protégez par exemple le paramétrage contre tout accès non autorisé.
- Prenez les mesures appropriées pour d'éventuels dysfonctionnements (par exemple, arrêt d'urgence contrôlé ou arrêt d'urgence).

# 4 Installer la bibliothèque et l'ajouter à un projet

Si vous souhaitez utiliser des blocs fonctionnels STOBER, vous devez les installer dans TwinCAT 3 comme bibliothèque et les ajouter à votre projet.

## Installer une bibliothèque

- 1. Dans Solution Explorer, naviguez vers votre projet API > References.
- 2. Dans la fenêtre principale, cliquez sur Add library.
  - ⇒ La fenêtre Add library s'ouvre.
- 3. Cliquez sur Advanced....
  - ⇒ Une autre fenêtre Add library s'ouvre.
- 4. Cliquez sur Library Repository....
- 5. La fenêtre Library Repository s'ouvre.
- 6. Cliquez sur Install..., naviguez vers la bibliothèque à installer et cliquez sur Open.
- ⇒ La bibliothèque sélectionnée est installée dans le répertoire de bibliothèque.

### Ajouter la bibliothèque à un projet

- 1. Dans Solution Explorer, naviguez vers votre projet API > References.
- 2. Dans la fenêtre principale, cliquez sur Add library.
  - ⇒ La fenêtre Add library s'ouvre.
- 3. Sous Application > STÖBER Antriebstechnik GmbH + Co. KG, sélectionnez la bibliothèque que vous souhaitez ajouter et confirmez en cliquant sur OK.
- ⇒ La bibliothèque est ajoutée à votre projet API sous References dans Solution Explorer.

# 5 Relier l'axe CN et le projet API

Si le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API. Pour savoir si une liaison constitue la condition préalable, consultez la description du bloc fonctionnel correspondant.

## Créer une variable

Dans votre projet API, définissez une variable de type AXIS\_REF.

## Relier une variable à l'axe CN

- ✓ Vous avez activé le mode Config.
- 1. Dans Solution Explorer, naviguez vers Motion > NC-Task 1 SAF > Axes > Axis1.
- 2. Dans la fenêtre principale, passez à l'onglet Settings.
- 3. Sélectionnez Link To PLC ....
  - ⇒ La fenêtre Select Axis PLC Reference ('Axis 1') s'ouvre.
- 4. Dans la liste, sélectionnez la variable de type AXIS\_REF préalablement créée dans le projet API et confirmez avec OK.
- ⇒ La variable et l'axe CN sont reliés.

# 6 Blocs fonctionnels

Le tableau suivant vous donne un aperçu des blocs fonctionnels disponibles.

| Bloc fonctionnel                       | Description                                                                                                                                                                                                      | Version<br>logicielle        | Version de<br>bibliothèque |
|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------|
| STOBER_BoxName [ 11]                   | Écrire le nom du SubDevice<br>EtherCAT dans le paramètre A251<br>du servo-variateur                                                                                                                              | À partir de<br>V 3.1.4022.22 | À partir de V 3.1.0.0      |
| STOBER Backup Restore Initiator [> 12] | Déterminer les services possibles<br>pour le bloc fonctionnel<br>STOBER_Backup_Restore                                                                                                                           | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER Backup Restore [] 14]           | Charger les planifications dans les servo-variateurs depuis TwinCAT 3                                                                                                                                            | À partir de<br>V 3.1.4022.22 | À partir de V 3.1.1.0      |
| STOBER MC HOME [ 20]                   | Commander le référençage par le<br>servo-variateur des applications<br>CiA 402 et CiA 402 Hires Motion<br>(avec transfert d'un axe CN)                                                                           | À partir de<br>V 3.1.4022.22 | À partir de V 3.1.0.0      |
| STOBER MC HOME REF [ 23]               | Commander le référençage par le<br>servo-variateur des applications<br>CiA 402 et CiA 402 Hires Motion<br>(avec transfert de la position de<br>référence, de la méthode de<br>référençage ainsi que d'un axe NC) | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER Action [ 26]                    | Exécuter des actions sur le servo-<br>variateur                                                                                                                                                                  | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER Power Action [] 28]             | Exécuter des actions sur le servo-<br>variateur après autorisation<br>préalable du servo-variateur (avec<br>transfert d'un axe CN)                                                                               | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER Phase Test [ 31]                | Exécuter l'action Test de phase sur<br>le servo-variateur (avec transfert<br>d'un axe CN)                                                                                                                        | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER_PRM_LoadMatrix [ ] 34]          | Lire la matrice de charge du servo-<br>variateur (R118) et l'écrire dans un<br>Array (avec transfert d'un axe CN)                                                                                                | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER PRM LoadMatrix AMS [] 36]       | Lire la matrice de charge du servo-<br>variateur (R118) et l'écrire dans un<br>Array                                                                                                                             | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER_PRM_LoadMatrix_File [] 38]      | Lire la matrice de charge du servo-<br>variateur (R118) et la placer dans<br>un répertoire sous forme de fichier<br>(avec transfert d'un axe CN)                                                                 | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |
| STOBER PRM LoadMatrix File AMS [] 41]  | Lire la matrice de charge du servo-<br>variateur (R118) et la placer dans<br>un répertoire sous forme de fichier                                                                                                 | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.3      |
| STOBER SDO Info [▶ 44]                 | Déterminez si le service SDO Info<br>est actif dans le servo-variateur                                                                                                                                           | À partir de<br>V 3.1.4024.40 | À partir de V 3.1.2.0      |

Tab. 1: Blocs fonctionnels pour TwinCAT 3

## 6.1 STOBER\_BoxName

En exécutant le bloc fonctionnel STOBER\_BoxName dans votre projet TwinCAT, le nom du SubDevice EtherCAT attribué dans TwinCAT 3 est automatiquement écrit dans le paramètre A251 du servo-variateur. Cette procédure est effectuée pour tous les servo-variateurs STOBER du projet avec exécution unique du bloc fonctionnel. Lors de la configuration des servo-variateurs dans DriveControlSuite, cela vous facilite l'affectation aux servo-variateurs planifiés dans TwinCAT 3. La transmission du nom au SubDevice EtherCAT a lieu via l'échange de données SDO.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4022.22
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.0.0

### Information

Lorsque vous utilisez le bloc fonctionnel, vous devez veiller à ce que lors de la mise en service, le matériel réellement utilisé concorde avec la topologie configurée dans TwinCAT 3. Si le matériel et la topologie du réseau dans TwinCAT 3 ne concordent pas, cela entraînera des dysfonctionnements du bloc fonctionnel.

### Paramètre

|   | STOBER_BoxName                          |                    |
|---|-----------------------------------------|--------------------|
| _ | Execute BOOL                            | BOOL Busy          |
| _ | AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Done          |
|   |                                         | BOOL Error -       |
|   |                                         | UDINT ErrorID      |
|   |                                         | eFBError FBErrorID |

Fig. 1: Bloc fonctionnel STOBER\_BoxName : paramètres d'entrée et de sortie

| Paramètre                        | Type de données | Déclaration | Description                                                                                          |
|----------------------------------|-----------------|-------------|------------------------------------------------------------------------------------------------------|
| Execute                          | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                    |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID      | IN          | AMS NetID du MainDevice EtherCAT                                                                     |
| Busy                             | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : écriture pas encore terminée)                                |
| Done                             | BOOL            | OUT         | État du bloc fonctionnel (Done = True : écriture terminée<br>avec succès)                            |
| Error                            | BOOL            | OUT         | État du bloc fonctionnel (Error = True : écriture erronée)                                           |
| ErrorID                          | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                |
| FBErrorID                        | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [ <u>8</u> 48]) |

Tab. 2: Bloc fonctionnel STOBER\_BoxName : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## 6.1.1 Exemple de code

L'exemple suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      fbBoxname:STOBER BoxName;
      bExecuteBox: BOOL;
      bError: BOOL;
      bBusy: BOOL;
      bDone: BOOL;
      uiErrorID: UDINT;
      uiFbErrorID: eFBError;
END VAR
fbBoxname(
      AmsNetId EtherCAT MainDevice:='172.18.132.104.2.1',
      Execute:=bExecuteBox,
      Error=>bError,
      Busy=>bBusy,
      Done=>bDone,
      ErrorID=>uiErrorID,
      FBErrorID=>uiFbErrorID);
```

## 6.2 STOBER\_Backup\_Restore\_Initiator

Le bloc fonctionnel STOBER\_Backup\_Restore\_Initiator permet de déterminer les services possibles pour le bloc fonctionnel STOBER\_Backup\_Restore. Le bloc fonctionnel vérifie si une sauvegarde peut être effectuée ou si une restauration est nécessaire. La sortie iAction du bloc fonctionnel permet de déterminer le service pour l'entrée Servicetype du bloc fonctionnel STOBER\_Backup\_Restore.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Plateforme cible : ordinateur ou CX avec système d'exploitation Windows Embedded Standard (WES) 7, Windows 7 ou Windows 10
- Ordinateur d'ingénierie avec environnement d'ingénierie TwinCAT 3 (XAE) et commande EtherCAT externe avec environnement d'exécution TwinCAT 3 (XAR)

## Paramètre

|   | STOBER_Backup_Restore_Initiator         |                      |
|---|-----------------------------------------|----------------------|
| _ | Execute BOOL                            | BOOL Busy            |
| _ | AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Done            |
| _ | Filepath T_MAXSTRING                    | BOOL Error           |
| _ | SubDeviceAddr UINT                      | UDINT ErrorID        |
|   |                                         | eFBError FBErrorID - |
|   |                                         | INT iAction          |
|   |                                         | BOOL newEntry        |

Fig. 2: Bloc fonctionnel STOBER\_Backup\_Restore\_Initiator : paramètres d'entrée et de sortie

| Paramètre                        | Type de données | Déclaration | Description                                                                                                                                                                                                                                          |
|----------------------------------|-----------------|-------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execute                          | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                                                                                                                                                    |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID      | IN          | AMS NetID du MainDevice EtherCAT                                                                                                                                                                                                                     |
| Filepath                         | T_MAXSTRING     | IN          | Chemin d'accès au fichier vers le répertoire du fichier de projet (*.ds6) sur la commande EtherCAT                                                                                                                                                   |
| SubDeviceAddr                    | UINT            | IN          | Adresse du SubDevice EtherCAT                                                                                                                                                                                                                        |
| Busy                             | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : service pas encore terminé)                                                                                                                                                                                  |
| Done                             | BOOL            | OUT         | État du bloc fonctionnel (Done = True : service terminé avec succès)                                                                                                                                                                                 |
| Error                            | BOOL            | OUT         | État du bloc fonctionnel (Error = True : service défectueux)                                                                                                                                                                                         |
| ErrorID                          | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                                                                                                                                                                |
| FBErrorID                        | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [] 48])                                                                                                                                                         |
| iAction                          | INT             | OUT         | <ul> <li>Action qui peut être demandée par le bloc fonctionnel</li> <li>STOBER_Backup_Restore :</li> <li>iAction = 0 (sauvegarde, sauvegarde avec rétro-<br/>documentation ou Restore)</li> </ul>                                                    |
|                                  |                 |             | <ul> <li>iAction = 2 (Restore)</li> </ul>                                                                                                                                                                                                            |
| newEntry                         | BOOL            | OUT         | <ul> <li>Informations sur DeviceInfo.txt :</li> <li>newEntry = True : le servo-variateur a été ajouté à DeviceInfo.txt ou DeviceInfo.txt a été recréé</li> <li>newEntry = False : le servo-variateur est déjà contenu dans DeviceInfo.txt</li> </ul> |

Tab. 3: Bloc fonctionnel STOBER\_Backup\_Restore\_Initiator : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3 plc intro/2529388939.html?id=3451082169760117126</u>.

## 6.2.1 Exemple de code

L'exemple suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      fbBackup Init:STOBER Backup Restore Initiator;
      bExecute: BOOL;
      bError: BOOL;
      bBusy: BOOL;
      bDone: BOOL;
      ErrorIDADS: UDINT;
      FbErrorID: STOBER G6 Util.eFBERROR;
      iAction: INT;
END_VAR
fbBackup Init(
      AmsNetId EtherCAT MainDevice:='192.168.12.50.3.1',
      Execute:=bExecute,
      Filepath:='C:\Transfer\ExampleProject\DS6-Projects',
      SubDeviceAddr:=1004,
      Error=>bError,
      Busy=>bBusy,
      Done=>bDone,
      ErrorID=>ErrorIDADS,
      FBErrorID=>FbErrorID,
      iAction=>iAction);
```

## 6.3 STOBER\_Backup\_Restore

Le bloc fonctionnel STOBER\_Backup\_Restore permet d'envoyer des configurations DriveControlSuite sélectionnées via TwinCAT 3 depuis la commande EtherCAT au servo-variateur, ou de les lire à partir du servo-variateur. Pour l'affectation correcte des servo-variateurs planifiés dans DriveControlSuite aux SubDevices EtherCAT planifiés dans TwinCAT 3, vous avez également besoin du bloc fonctionnel STOBER BoxName.

Pour déterminer les services possibles, exécutez d'abord le bloc fonctionnel STOBER\_Backup\_Restore\_Initiator.

Le bloc fonctionnel STOBER\_Backup\_Restore accède au mode script de DriveControlSuite. La sauvegarde ou la restauration de la configuration dans le servo-variateur sont effectuées dès que DriveControlSuite est lancée et qu'une liaison en ligne est établie.

#### Information

Le bloc fonctionnel exécute l'action Enregistrer les valeurs (A00).

#### **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Plateforme cible : ordinateur ou CX avec système d'exploitation Windows Embedded Standard (WES) 7, Windows 7 ou Windows 10
- Ordinateur d'ingénierie avec environnement d'ingénierie TwinCAT 3 (XAE) et commande EtherCAT externe avec environnement d'exécution TwinCAT 3 (XAR)
- DriveControlSuite à partir de la version 6.5-K, installée sur la commande EtherCAT

## Paramètre

|   | STOBER_Backup_Restore                   |                    |
|---|-----------------------------------------|--------------------|
|   | Execute BOOL                            | BOOL Busy-         |
|   | AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Done-         |
|   | Filepath T_MAXSTRING                    | BOOL Error         |
|   | DS6ProcessPath T_MAXSTRING              | UDINT ErrorID      |
| _ | SubDeviceAddr UINT                      | eFBError FBErrorID |
|   | Servicetype eService                    |                    |

Fig. 3: Bloc fonctionnel STOBER\_Backup\_Restore : paramètres d'entrée et de sortie

| Paramètre                        | Type de données | Déclaration | Description                                                                                                                                              |
|----------------------------------|-----------------|-------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Execute                          | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                                                        |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID      | IN          | AMS NetID du MainDevice EtherCAT                                                                                                                         |
| Filepath                         | T_MAXSTRING     | IN          | Chemin d'accès au fichier vers le répertoire du fichier de projet (*.ds6) sur la commande EtherCAT                                                       |
| DS6ProcessPath                   | T_MAXSTRING     | IN          | Chemin d'accès au fichier DriveControlSuite (*.exe) sur la<br>commande EtherCAT, p. ex. :<br>C:\Program Files (x86)\STOBER\DriveControlSuite (6.X-X)\bin |
| SubDeviceAddr                    | UINT            | IN          | Adresse du SubDevice EtherCAT                                                                                                                            |
| Type de service                  | eService        | IN          | Service demandé : <ul> <li>Backup</li> <li>Backup_RevDocu (sauvegarde avec rétro-documentation)</li> <li>Restore</li> </ul>                              |
| Busy                             | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : service pas encore terminé)                                                                                      |
| Done                             | BOOL            | OUT         | État du bloc fonctionnel (Done = True : service terminé avec succès)                                                                                     |
| Error                            | BOOL            | OUT         | État du bloc fonctionnel (Error = True : service défectueux)                                                                                             |
| ErrorID                          | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs fonctionnels utilisés en interne                                                                       |
| FBErrorID                        | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [ <u>+48]</u> )                                                     |

Tab. 4: Bloc fonctionnel STOBER\_Backup\_Restore : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## Services

| Type de service | Description                                                                                                                     |
|-----------------|---------------------------------------------------------------------------------------------------------------------------------|
| Backup          | Le projet est extrait du servo-variateur et enregistré dans le répertoire sur la commande<br>EtherCAT.                          |
| Backup_RevDocu  | Le projet est extrait du servo-variateur avec la rétro-documentation et enregistré dans le répertoire sur la commande EtherCAT. |
| Restore         | Le projet dans le répertoire sur la commande EtherCAT est transmis au servo-variateur où il est ensuite enregistré.             |

Tab. 5: Bloc fonctionnel STOBER\_Backup\_Restore : type de service

#### Information

Si un service de sauvegarde (Backup) est exécuté et qu'un projet existe déjà dans le répertoire sur la commande EtherCAT, il est déplacé dans le sous-répertoire SaveOriginals et doté de la date et de l'heure. Le sous-répertoire est créé automatiquement dès qu'un service de sauvegarde est exécuté pour la première fois.

## 6.3.1 Utiliser un bloc fonctionnel

Planifiez tous les servo-variateurs, entrez les noms des appareils API et enregistrez votre projet DS6 sur la commande EtherCAT. Exécutez ensuite les blocs fonctionnels STOBER\_BoxName et STOBER\_Backup\_Restore.

### Information

Pour chaque servo-variateur de votre réseau EtherCAT, vous avez besoin d'une instance du bloc fonctionnel STOBER\_Backup\_Restore.

### Créer un projet DS6 et enregistrer la planification sur les servo-variateurs

- 1. Créez un nouveau répertoire de projet sur votre commande EtherCAT.
- 2. Démarrez DriveControlSuite sur la commande EtherCAT.
- 3. Créez un projet et planifiez tous les servo-variateurs de votre réseau EtherCAT.
- 4. Transmettez le projet aux servo-variateurs et enregistrez-le sur ces derniers de manière non volatile.

### Information

Vous pouvez également créer un projet DS6 séparé pour chaque servo-variateur de votre réseau EtherCAT.

#### Entrer un nom d'appareil API et enregistrer un projet DS6 sur la commande EtherCAT

- 1. Passez à TwinCAT XAE et naviguez dans Solution Explorer vers un SubDevice EtherCAT.
- 2. Double-cliquez sur le SubDevice EtherCAT pour l'ouvrir.
- Fenêtre principale > Onglet General > Champ Name : copiez le nom du SubDevice EtherCAT dans le presse-papiers.
- 4. Passez à DriveControlSuite sur votre commande EtherCAT.
- Marquez le servo-variateur dans l'arborescence de projet correspondante et cliquez sur l'axe planifié souhaité dans le menu de projet > Zone Liste des paramètres.
- Groupe A > Paramètres A251 PLC nom du dispositif : collez le nom copié à partir du presse-papiers.
- 7. Répétez ces étapes pour tous les autres servo-variateurs de votre projet.
- 8. Enregistrez le projet dans le répertoire créé précédemment sur la commande EtherCAT.
- 9. Fermez DriveControlSuite sur la commande EtherCAT.

#### Information

N'enregistrez le projet qu'après vous être connecté en ligne aux servo-variateurs. Assurez-vous que le numéro de production du servo-variateur concerné a été entré dans le paramètre E52[2] lors de l'établissement de la liaison.

### Exécuter un bloc fonctionnel

#### Information

Lors de la première utilisation du bloc fonctionnel STOBER\_Backup\_Restore, le service Restore est exécuté afin de transférer le projet vers les servo-variateurs.

Pour déterminer les services possibles, exécutez d'abord le bloc fonctionnel STOBER\_Backup\_Restore\_Initiator.

Si le mauvais service est demandé, la sortie FBErrorID du bloc fonctionnel STOBER\_Backup\_Restore émet l'erreur 109: WRONG\_SERVICE\_TYPE\_INPUT.

- L'entrée Filepath du bloc fonctionnel STOBER\_Backup\_Restore indique le chemin d'accès au fichier vers le répertoire du fichier de projet (\*.ds6) sur la commande EtherCAT.
- L'entrée DS6ProcessPath du bloc fonctionnel STOBER\_Backup\_Restore indique le chemin d'accès au fichier DriveControlSuite (\*.exe) sur la commande EtherCAT.
- 1. Passez à TwinCAT XAE.
- 2. Assurez-vous que tous les servo-variateurs de votre réseau EtherCAT sont dans l'état Operational.
- 3. Exécutez le bloc fonctionnel STOBER\_BoxName.
  - ⇒ Si le bloc fonctionnel a écrit les noms de tous les SubDevices EtherCAT dans les servo-variateurs, la sortie Done est définie sur True.
- 4. Appelez ensuite successivement les instances du bloc fonctionnel STOBER\_Backup\_Restore pour chaque servovariateur.
- ⇒ Une fois le service terminé avec succès, la sortie Done est définie sur True.
- ⇒ Les données sont enregistrées de manière non volatile dans le servo-variateur.

## 6.3.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST). Il montre le modèle série du bloc fonctionnel STOBER\_Backup\_Restore pour un réseau EtherCAT avec deux servo-variateurs.

```
PROGRAM MAIN
VAR
      fbBoxname:STOBER BoxName;
      fbBackup_Init1,fbBackup_Init2:STOBER_Backup_Restore_Initiator;
      fbBackup1,fbBackup2:STOBER Backup Restore;
      bExecuteBox: BOOL;
      bExecute BR init: ARRAY [0..1] OF BOOL;
      done init: ARRAY [0..1] OF BOOL;
      busy init: ARRAY [0..1] OF BOOL;
      Error init: ARRAY [0..1] OF BOOL;
      BR Init ErrorIDADS: ARRAY [0..1] OF UDINT;
      BR Init FbErrorID: ARRAY [0..1] OF STOBER G6 Util.eFBERROR;
      bExecute_BR: ARRAY [0..1] OF BOOL;
      done: ARRAY [0..1] OF BOOL;
      busy: ARRAY [0..1] OF BOOL;
      Error: ARRAY [0..1] OF BOOL;
      errorIDADS: ARRAY [0..1] OF UDINT;
      FBErrorID: ARRAY [0..1] OF STOBER G6 Util.eFBERROR;
      iAction: ARRAY [0..1] OF INT;
      bError: BOOL;
      bBusy: BOOL;
      bDone: BOOL;
      uiErrorID: UDINT;
      uiFbErrorID: STOBER_G6_Util.eFBError;
      service: ARRAY [0..1] OF STOBER G6 Util.eService;
END VAR
fbBoxname(
      AmsNetId_EtherCAT_MainDevice:='192.168.12.50.3.1',
      Execute:=bExecuteBox,
      Error=>bError,
      Busy=>bBusy,
      Done=>bDone,
      ErrorID=>uiErrorID,
      FBErrorID=>uiFbErrorID);
fbBackup_Init1(
      Execute:=bExecute BR init[0],
      AmsNetId EtherCAT MainDevice:='192.168.12.50.3.1',
      Filepath:='C:\Transfer\ExampleProject\DS6-Projects',
      SubDeviceAddr:=1004,
      Done=>done init[0],
      Busy=>busy init[0],
      Error =>Error init[0],
      ErrorID=>BR Init ErrorIDADS[0],
      FBErrorID=>BR Init FbErrorID [0],
      iAction=>iAction[0]);
```

```
IF iAction[0] = 0 THEN
      service[0]:=STOBER G6 Util.eService.Backup;
ELSE
      service[0]:=STOBER G6 Util.eService.RESTORE;
END IF
fbBackup1(
      Execute:=bExecute BR[0] AND done init[0],
      AmsNetId EtherCAT MainDevice:='192.168.12.50.3.1',
      Filepath:='C:\Transfer\ExampleProject\DS6-Projects',
      DS6ProcessPath:='C:\DS6\DriveControlSuite Nightly\bin',
      SubDeviceAddr:=1004,
      Servicetype:=service[0],
      Done=>done[0],
      Busy=>busy[0],
      Error[0],
      ErrorID=>errorIDADS[0],
      FBErrorID=>FbErrorID[0]);
fbBackup Init2(
      Execute:=bExecute BR init[1] AND done[0],
      AmsNetId EtherCAT MainDevice:='192.168.12.50.3.1',
      Filepath:='C:\Transfer\ExampleProject\DS6-Projects',
      SubDeviceAddr:=1005,
      Done=>done init[1],
      Busy=>busy init[1],
      Error init[1],
      ErrorID=>BR Init ErrorIDADS[1],
      FBErrorID=>BR Init FbErrorID [1],
      iAction=>iAction[1]);
IF iAction[1] = 0 THEN
      service[1]:=STOBER G6 Util.eService.Backup;
ELSE
      service[1]:=STOBER G6 Util.eService.RESTORE;
END IF
fbBackup2(
      Execute:=bExecute BR[1] AND done init[1],
      AmsNetId EtherCAT MainDevice:='192.168.12.50.3.1',
      Filepath:='C:\Transfer\ExampleProject\DS6-Projects',
      DS6ProcessPath:='C:\DS6\DriveControlSuite Nightly\bin',
      SubDeviceAddr:=1005,
      Servicetype:=service[1],
      Done=>done[1],
      Busy=>busy[1],
      Error[1],
      ErrorID=>errorIDADS[1],
      FBErrorID=>FbErrorID[1]);
```

## 6.4 STOBER\_MC\_HOME

Le bloc fonctionnel contrôle le référençage par le servo-variateur des applications CiA 402 et CiA 402 Hires Motion. Le mode d'exploitation actuel est lu lors de l'exécution du bloc fonctionnel. La méthode de référençage est ensuite activée pour la course de référençage définie dans le paramètre A586 pour le servo-variateur. Une fois le référençage terminé, le mode d'exploitation lu précédemment est réactivé.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

## Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API [> 9]).

## Paramètre

|   | STOBER_MC_    | HOME               |
|---|---------------|--------------------|
| _ | Axis AXIS_REF | BOOL Busy          |
| _ | Execute BOOL  | BOOL Done          |
| _ | Timeout TIME  | BOOL Error         |
|   |               | UDINT ErrorID      |
|   |               | eFBError FBErrorID |

Fig. 4: Bloc fonctionnel STOBER\_MC\_HOME : paramètres d'entrée et de sortie

| Paramètre     | Type de données | Déclaration | Description                                                                                                                       |
|---------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Axis          | AXIS_REF        | IN/OUT      | Structure de données de l'axe                                                                                                     |
| Execute       | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                                 |
| Temporisation | TIME            | IN          | Délai prédéfini au bout duquel un message d'erreur est<br>déclenché si la course de référençage n'aboutit pas à un<br>référençage |
| Busy          | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : référençage pas encore terminé)                                                           |
| Done          | BOOL            | OUT         | État du bloc fonctionnel (Done = True : référençage terminé)                                                                      |
| Error         | BOOL            | OUT         | État du bloc fonctionnel (Error = True : référençage erroné)                                                                      |
| ErrorID       | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                                             |
| FBErrorID     | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [▶_48])                                      |

Tab. 6: Bloc fonctionnel STOBER\_MC\_HOME : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3 plc intro/2529388939.html?id=3451082169760117126</u>.

## 6.4.1 Déroulement du référençage

## **Conditions préalables**

- L'axe CN et le projet API sont reliés (voir <u>Relier l'axe CN et le projet API [▶ 9]</u>)
- Le mode d'exploitation dans le servo-variateur correspond à csp, csv, cst ou Homing mode (A541 = 8: Cyclic synchronous position mode, 9: Cyclic synchronous velocity mode, 10: Cyclic synchronous torque mode ou 6: Homing mode
- L'axe est autorisé

### Déroulement

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_MC\_HOME :

- 1. Lecture des données d'axe (données d'accès ADS, p. ex. AMS NetID, adresse du SubDevice, type d'axe, ...)
- 2. Lecture du mode d'exploitation actuel de la commande pour l'axe
- 3. Suppression du bit de référence de l'axe CN
- 4. Définition du mode d'exploitation sur Homing mode (A541 = 6: Homing mode)
- 5. Lecture de la méthode de référençage (A586) via CoE
- 6. Démarrage de la course de référençage
- 7. Attendre la fin du référençage
- 8. Définition de la référence de l'axe CN
- 9. Définition de la position réelle actuelle comme position de consigne pour l'axe CN
- 10. Définition du mode d'exploitation (A541) sur le mode d'exploitation lu au début de l'action

## 6.4.2 Exemple de code

L'exemple suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lstober_MC_HOME: STOBER_MC_HOME;
      lEnable: MC_Power;
      lAxis: AXIS REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      Enable: BOOL;
END_VAR
lEnable(Axis:=lAxis,
      Enable:=Enable,
      Enable_Positive:=Enable,
      Enable Negative:=Enable);
lSTOBER_MC_HOME(Axis:=lAxis,
      Execute:=lExecute,
      Timeout:=T#180S,
      Busy=>lBusy,
      Done=>lDone,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>lFBErrorID);
```

# 6.5 STOBER\_MC\_HOME\_REF

Le bloc fonctionnel contrôle le référençage par le servo-variateur des applications CiA 402 et CiA 402 Hires Motion. Le mode d'exploitation actuel est lu lors de l'exécution du bloc fonctionnel. La méthode de référençage pour la course de référençage est ensuite écrite dans le paramètre A586 et activée. Une fois le référençage terminé, le mode d'exploitation lu précédemment est réactivé.

Il faut transmettre au bloc fonctionnel la position de référence (A569) qui doit être présente après le référençage et la méthode de référençage (A586) avec laquelle le servo-variateur est censé effectuer le référençage.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API (voir <u>Relier l'axe CN et le projet API (> 9]</u>).

## Paramètre

|                    | STOBER_MC_HOME_REF |                    |   |
|--------------------|--------------------|--------------------|---|
| <br>Axis AXIS_REF  |                    | BOOL Busy          | - |
| <br>Execute BOOL   |                    | BOOL Done          | - |
| <br>Timeout TIME   |                    | BOOL Error         | - |
| <br>ReferenceValue | LREAL              | UDINT ErrorID      | - |
| <br>HomingMethod   | eHomingMethod      | eFBError FBErrorID | - |

Fig. 5: Bloc fonctionnel STOBER\_MC\_HOME REF : paramètres d'entrée et de sortie

| Paramètre      | Type de données | Déclaration | Description                                                                                                                       |
|----------------|-----------------|-------------|-----------------------------------------------------------------------------------------------------------------------------------|
| Axis           | AXIS_REF        | IN/OUT      | Structure de données de l'axe                                                                                                     |
| Execute        | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                                 |
| Temporisation  | TIME            | IN          | Délai prédéfini au bout duquel un message d'erreur est<br>déclenché si la course de référençage n'aboutit pas à un<br>référençage |
| ReferenceValue | LREAL           | IN          | Position de référence après le référençage (A569)                                                                                 |
| HomingMethod   | eHomingMethod   | IN          | Méthode de référençage pour le référençage (A586)                                                                                 |
| Busy           | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : référençage pas<br>encore terminé)                                                        |
| Done           | BOOL            | OUT         | État du bloc fonctionnel (Done = True : référençage terminé)                                                                      |
| Error          | BOOL            | OUT         | État du bloc fonctionnel (Error = True : référençage erroné)                                                                      |
| ErrorID        | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                                             |
| FBErrorID      | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM) [</u> <u>48</u> ])                               |

Tab. 7: Bloc fonctionnel STOBER\_MC\_HOME-REF : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3 plc intro/2529388939.html?id=3451082169760117126</u>.

## 6.5.1 Déroulement du référençage

### **Conditions préalables**

- L'axe CN et le projet API sont reliés (voir <u>Relier l'axe CN et le projet API [▶ 9]</u>)
- Le mode d'exploitation dans le servo-variateur correspond à csp, csv, cst ou Homing mode (A541 = 8: Cyclic synchronous position mode, 9: Cyclic synchronous velocity mode, 10: Cyclic synchronous torque mode ou 6: Homing mode
- L'axe est autorisé

### Déroulement

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_MC\_HOME\_REF :

- 1. Écriture de la méthode de référençage dans le paramètre A586 (correspond à l'objet de communication Homing method selon CiA 402 ; objet 6098 hex, objet 6898 hex)
- 2. Écriture de la position de référence dans le paramètre A569 (correspond à l'objet de communication Home offset selon CiA 402 ; objet 607C hex, objet 687C hex)
- 3. Lecture des données d'axe (données d'accès ADS, p. ex. AMS NetID, adresse du SubDevice, type d'axe, ...)
- 4. Lecture du mode d'exploitation actuel de la commande pour l'axe
- 5. Suppression du bit de référence de l'axe CN
- 6. Définition du mode d'exploitation sur Homing mode (A541 = 6: Homing mode)
- 7. Lecture de la méthode de référençage (A586) via CoE
- 8. Démarrage de la course de référençage
- 9. Attendre la fin du référençage
- 10. Définition de la référence de l'axe CN
- 11. Définition de la position réelle actuelle comme position de consigne pour l'axe CN
- 12. Définition du mode d'exploitation (A541) sur le mode d'exploitation lu au début de l'action

## 6.5.2 Exemple de code

L'exemple suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lstober_MC_HOME: STOBER_MC_HOME_REF;
      lEnable: MC_Power;
      lAxis: AXIS REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      Enable: BOOL;
      ReferenceValue: LREAL;
      HomingMethod: eHomingMethod;
END_VAR
lEnable(Axis:=lAxis,
      Enable:=Enable,
      Enable Positive:=Enable,
      Enable_Negative:=Enable);
lSTOBER_MC_HOME(Axis:=lAxis,
      Execute:=lExecute,
      Timeout:=T#180S,
```

ReferenceValue:=ReferenceValue, HomingMethod:=HomingMethod, Busy=>lBusy,

Done=>lDone, Error=>lError,

ErrorID=>lErrorID,

FBErrorID=>lFBErrorID);

## 6.6 STOBER\_Action

Le bloc fonctionnel STOBER\_Action permet d'exécuter des actions sur le servo-variateur. Vous trouverez toutes les conditions préalables ainsi que des informations plus détaillées sur les différentes actions dans les descriptions des paramètres correspondants dans DriveControlSuite. Les coordonnées du paramètre (groupe et ligne) servent à calculer l'index pour le bloc fonctionnel. Après l'exécution, le bloc fonctionnel émet le résultat de l'action.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0

### Paramètre

| STOBER_Action                               |                    |
|---------------------------------------------|--------------------|
| <br>Execute BOOL                            | BOOL Busy          |
| <br>AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Done          |
| <br>SubDeviceAddr UINT                      | BOOL Error         |
| <br>Index WORD                              | UDINT ErrorID      |
| <br>Timeout TIME                            | UDINT ActionResult |

Fig. 6: Bloc fonctionnel STOBER\_Action : paramètres d'entrée et de sortie

| Paramètre                        | Type de données | Déclaration | Description                                                                                             |
|----------------------------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------|
| Execute                          | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                       |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID      | IN          | AMS NetID du MainDevice EtherCAT                                                                        |
| SubDeviceAddr                    | UINT            | IN          | Adresse du SubDevice EtherCAT                                                                           |
| Index                            | WORD            | IN          | Index de l'action à exécuter (voir Calcul de l'index [] 46])                                            |
| Temporisation                    | TIME            | IN          | Délai prédéfini au bout duquel un message d'erreur est<br>déclenché si l'action ne livre aucun résultat |
| Busy                             | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : action pas encore terminée)                                     |
| Done                             | BOOL            | OUT         | État du bloc fonctionnel (Done = True : action terminée avec succès)                                    |
| Error                            | BOOL            | OUT         | État du bloc fonctionnel (Error = True : action erronée)                                                |
| ErrorID                          | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                   |
| ActionResult                     | UDINT           | OUT         | Résultat de l'action                                                                                    |

Tab. 8: Bloc fonctionnel STOBER\_Action : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## 6.6.1 Exemples d'actions sans autorisation requise

Le tableau suivant fournit des exemples d'actions qui peuvent être exécutées via le bloc fonctionnel STOBER\_Action et qui ne nécessitent pas d'autorisation du servo-variateur.

| Paramètre | Action                                     | Index axe A | Index axe B |
|-----------|--------------------------------------------|-------------|-------------|
| A00       | Sauvegarder valeurs                        | 2000 hex    | A000 hex    |
| A09       | Redémarrer                                 | 2009 hex    | A009 hex    |
| B06       | Lire plaque signalétique                   | 2006 hex    | A206 hex    |
| B30       | lire le modèle de la hache de<br>la plaque | 221E hex    | A21E hex    |
| 138       | Effacer référence                          | 3026 hex    | B026 hex    |

Tab. 9: Bloc fonctionnel STOBER\_Action : exemples d'actions sans autorisation requise

Dans DriveControlSuite, vérifiez les actions dont vous disposez en fonction du niveau d'accès, du matériel, du logiciel et de l'application. Vous trouverez toutes les conditions préalables ainsi que des informations plus détaillées sur les différentes actions dans les descriptions des paramètres correspondants.

## 6.6.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      fbAction:STOBER Action;
      SubDevice Address:UINT;
      bExecute: BOOL;
      bError: BOOL;
      bBusy: BOOL;
      bDone: BOOL;
      uiADSErrorID: UDINT;
      uiActionResult: UDINT;
      Net_ID: T_AmsNetID;
END VAR
VAR CONSTANT
      SaveValuesIndex:WORD:=16#2000;
END VAR
fbAction(
      AmsNetId EtherCAT MainDevice:=Net ID,
      Execute:=bExecute,
      SubDevice_Addr:=SubDevice_Address,
      Index:=SaveValuesIndex,
      Timeout:=t#60s,
      Error=>bError,
      Busy=>bBusy,
      Done=>bDone,
      ErrorID=>uiADSErrorID,
      ActionResult=>uiActionResult);
```

## 6.7 STOBER\_Power\_Action

Le bloc fonctionnel STOBER\_Power\_Action permet d'exécuter sur le servo-variateur des actions nécessitant une autorisation du servo-variateur. Vous trouverez toutes les conditions préalables ainsi que des informations plus détaillées sur les différentes actions dans les descriptions des paramètres correspondants dans DriveControlSuite. Les coordonnées du paramètre (groupe et ligne) servent à calculer l'index pour le bloc fonctionnel. Après l'exécution, le bloc fonctionnel émet le résultat de l'action.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

### Information

Tous les blocs MC\_POWER de votre projet API ne peuvent en aucun cas écraser l'autorisation de ce bloc fonctionnel et doivent être appelés avant celui-ci.

## Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API [> 9]).

### Paramètre

|   | STOBER_P      | ower_Action        |
|---|---------------|--------------------|
| _ | Axis AXIS_REF | BOOL Busy -        |
| _ | Execute BOOL  | BOOL Done -        |
| _ | Timeout TIME  | BOOL Error         |
| _ | Index WORD    | UDINT ErrorID      |
|   |               | eFBError FBErrorID |
|   |               | UDINT ActionResult |

Fig. 7: Bloc fonctionnel STOBER\_Power\_Action : paramètres d'entrée et de sortie

| Paramètre     | Type de données | Déclaration | Description                                                                                          |
|---------------|-----------------|-------------|------------------------------------------------------------------------------------------------------|
| Axis          | AXIS_REF        | IN/OUT      | Structure de données de l'axe                                                                        |
| Execute       | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                    |
| Temporisation | TIME            | IN          | Délai prédéfini au bout duquel un message d'erreur est déclenché si l'action ne livre aucun résultat |
| Index         | WORD            | IN          | Index de l'action à exécuter (voir Calcul de l'index [] 46])                                         |
| Busy          | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : action pas encore terminée)                                  |
| Done          | BOOL            | OUT         | État du bloc fonctionnel (Done = True : action terminée avec succès)                                 |
| Error         | BOOL            | OUT         | État du bloc fonctionnel (Error = True : action erronée)                                             |
| ErrorID       | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs fonctionnels utilisés en interne                   |
| FBErrorID     | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [ <u>8</u> 48]) |
| ActionResult  | UDINT           | OUT         | Résultat de l'action                                                                                 |

Tab. 10: Bloc fonctionnel STOBER\_Power\_Action : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3 plc intro/2529388939.html?id=3451082169760117126</u>.

## 6.7.1 Exemples d'actions nécessitant une autorisation

Le tableau suivant répertorie des exemples d'actions qui peuvent être exécutées via le bloc fonctionnel STOBER\_Power\_Action et qui nécessitent une autorisation du servo-variateur.

| Paramètre | Action                                              | Index axe A | Index axe B |
|-----------|-----------------------------------------------------|-------------|-------------|
| B41       | Mesurer le moteur                                   | 2229 hex    | A229 hex    |
| B43       | Test de bobinage                                    | 222B hex    | A22B hex    |
| B49       | Optimiser régulateur de courant<br>(immobilisation) | 2231 hex    | A231 hex    |

Tab. 11: Bloc fonctionnel STOBER\_Power\_Action : exemples d'actions nécessitant une autorisation

Dans DriveControlSuite, vérifiez les actions dont vous disposez en fonction du niveau d'accès, du matériel, du logiciel et de l'application. Vous trouverez toutes les conditions préalables ainsi que des informations plus détaillées sur les différentes actions dans les descriptions des paramètres correspondants.

## 6.7.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_Power_Action: STOBER_Power_Action;
      lAxis: AXIS_REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      lTimeout: TIME;
END_VAR
VAR CONSTANT
      Phasetest_Index:WORD:=16#2228;
END_VAR
lSTOBER_Power_Action(Axis:=lAxis,
      Execute:=lExecute,
      Timeout:=lTimeout,
      Index:=Phasetest_Index,
      Busy=>1Busy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>lFBErrorID);
```

## 6.8 STOBER\_Phase\_Test

Le bloc fonctionnel STOBER\_Phase\_Test lance l'action de test de phase sur le servo-variateur, qui calibre entre autres le décalage de commutation. Une fois le test de phase terminé, les valeurs sont enregistrées de manière non volatile sur le servo-variateur.

## ▲ DANGER !

## Danger de mort dû à un axe vertical soumis à la force de gravité !

Lors de cette action, les freins sont desserrés. Pendant ce temps, le moteur ne peut que générer un couple/une force limité(e) ou pas de couple/force du tout. Un axe vertical soumis à la force de gravité peut ainsi s'abaisser.

• N'exécutez cette action que dans le cas d'axes non soumis à la force de gravité.

### Information

Le bloc fonctionnel exécute l'action Enregistrer les valeurs (A00).

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

## Information

Tous les blocs MC\_POWER de votre projet API ne peuvent en aucun cas écraser l'autorisation de ce bloc fonctionnel et doivent être appelés avant celui-ci.

## Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API [> 9]).

### Paramètre

|                   | STOBER_Phase_Test          |
|-------------------|----------------------------|
| <br>Axis AXIS_REF | BOOL Busy                  |
| <br>Execute BOOL  | BOOL Done                  |
| <br>Timeout TIME  | BOOL Error                 |
|                   | UDINT ErrorID              |
|                   | eFBError FBErrorID         |
|                   | eActionResult ActionResult |

Fig. 8: Bloc fonctionnel STOBER\_Phase\_Test : paramètres d'entrée et de sortie

| Paramètre     | Type de données | Déclaration | Description                                                                                                               |
|---------------|-----------------|-------------|---------------------------------------------------------------------------------------------------------------------------|
| Axis          | AXIS_REF        | IN/OUT      | Structure de données de l'axe                                                                                             |
| Execute       | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                         |
| Temporisation | TIME            | IN          | Délai prédéfini au bout duquel un message d'erreur est déclenché si l'action ne livre aucun résultat                      |
| Busy          | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : action pas encore terminée ou enregistrement des valeurs pas encore exécuté)      |
| Done          | BOOL            | OUT         | État du bloc fonctionnel (Done = True : action terminée avec succès et valeurs enregistrées)                              |
| Error         | BOOL            | OUT         | État du bloc fonctionnel (Error = True : action erronée)                                                                  |
| ErrorID       | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs fonctionnels utilisés en interne                                        |
| FBErrorID     | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u> ( <u>ENUM) [<math>\blacktriangleright</math> 48]</u> ) |
| ActionResult  | eActionResult   | OUT         | Résultat de l'action                                                                                                      |

Tab. 12: Bloc fonctionnel STOBER\_Phase\_Test : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3 plc intro/2529388939.html?id=3451082169760117126</u>.

## 6.8.1 Déroulement du test de phase

## **Conditions préalables**

L'axe CN et le projet API sont reliés (voir <u>Relier l'axe CN et le projet API [) 9]</u>)

## Déroulement

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_Phase\_Test :

- 1. Lecture des données d'axe (données d'accès ADS, p. ex. AMS NetID, adresse du SubDevice, type d'axe, ...)
- 2. Exécution du bloc fonctionnel STOBER\_Power\_Action avec l'action Test de phase :
  - 2.1. Vérification de l'autorisation et éventuellement autorisation de l'axe
  - 2.2. Exécuter l'action Test de phase
  - 2.3. Supprimer l'autorisation de l'axe
- 3. Exécuter l'action Enregistrer les valeurs (A00)

## 6.8.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_LoadMatrix : STOBER_PRM_LoadMatrix;
      lAxis: AXIS_REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      PRMjson: ARRAY [0..16255] OF BYTE;
      StringLength: UINT;
end_var
lSTOBER_LoadMatrix(Axis:=lAxis,PRMjson:=PRMjson,
      Execute:=lExecute,
      Busy=>lBusy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>1FBErrorID,
      StringLength=>StringLength);
```

## 6.9 STOBER\_PRM\_LoadMatrix

Le bloc fonctionnel lit la matrice de charge du servo-variateur (R118) et l'écrit dans l'Array transféré.

### **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

### Information

Pour pouvoir lire la matrice de charge, la fonction Predictive Maintenance doit être active dans le servo-variateur.

#### Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API (voir <u>Relier l'axe CN et le projet API (> 9]</u>).

### Paramètre

| STOBER_PRM_LoadMatrix              |                    |   |
|------------------------------------|--------------------|---|
| <br>Axis AXIS_REF                  | BOOL Busy          | _ |
| <br>PRMjson ARRAY [016255] OF BYTE | BOOL Done          | _ |
| <br>Execute BOOL                   | BOOL Error         | _ |
|                                    | UDINT ErrorID      | _ |
|                                    | eFBError FBErrorID | _ |
|                                    | UINT StringLength  | _ |

Fig. 9: Bloc fonctionnel STOBER\_PRM\_LoadMatrix : paramètres d'entrée et de sortie

| Paramètre    | Type de données           | Déclaration | Description                                                                                          |
|--------------|---------------------------|-------------|------------------------------------------------------------------------------------------------------|
| Axis         | AXIS_REF                  | IN/OUT      | Structure de données de l'axe                                                                        |
| PRMjson      | ARRAY [016255]<br>OF BYTE | IN/OUT      | Mémoire tampon de données souhaitée pour l'écriture de<br>la matrice de charge                       |
| Execute      | BOOL                      | IN          | Activation du bloc fonctionnel avec flanc montant                                                    |
| Busy         | BOOL                      | OUT         | État du bloc fonctionnel (Busy = True : lecture et écriture<br>pas encore terminées)                 |
| Done         | BOOL                      | OUT         | État du bloc fonctionnel (Done = True : lecture et écriture terminées avec succès)                   |
| Error        | BOOL                      | OUT         | État du bloc fonctionnel (Error = True : lecture/écriture erronées)                                  |
| ErrorID      | UDINT                     | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                |
| FBErrorID    | eFBError                  | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM)</u> [ <u>8</u> 48]) |
| StringLength | UINT                      | OUT         | Nombre d'octets écrits dans l'Array PRMjson                                                          |

Tab. 13: Bloc fonctionnel STOBER\_PRM\_LoadMatrix : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## 6.9.1 Déroulement de la lecture et de l'écriture

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_PRM\_LoadMatrix :

- 1. Lecture des données d'axe (données d'accès ADS, p. ex. AMS NetID, adresse du SubDevice, type d'axe, ...)
- 2. Lecture de l'état de Predictive-Maintenance (R100)
- 3. Lecture de la matrice de charge et écriture dans l'Array PRMjson transféré
- 4. Calculer la StringLength de la matrice de charge

## 6.9.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER LoadMatrix : STOBER PRM LoadMatrix;
      lAxis: AXIS_REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      PRMjson: ARRAY [0..16255] OF BYTE;
      StringLength: UINT;
END VAR
lSTOBER LoadMatrix(Axis:=lAxis,PRMjson:=PRMjson,
      Execute:=lExecute,
      Busy=>lBusy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>1FBErrorID,
      StringLength=>StringLength);
```

# 6.10 STOBER\_PRM\_LoadMatrix\_AMS

Le bloc fonctionnel lit la matrice de charge du servo-variateur (R118) et l'écrit dans l'Array transféré.

### **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

## Information

Pour pouvoir lire la matrice de charge, la fonction Predictive Maintenance doit être active dans le servo-variateur.

### Paramètre

|   | STOBER_PRM_LoadMatrix_AMS               |                    |
|---|-----------------------------------------|--------------------|
| — | PRMjson ARRAY [016255] OF BYTE          | BOOL Busy          |
| _ | AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Done          |
| _ | SubDeviceAddr UINT                      | BOOL Error         |
| _ | AxisNumber USINT                        | UDINT ErrorID      |
| _ | Execute BOOL                            | eFBError FBErrorID |
|   |                                         | UINT StringLength  |

Fig. 10: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_AMS : paramètres d'entrée et de sortie

| Paramètre                        | Type de données           | Déclaration | Description                                                                                                        |
|----------------------------------|---------------------------|-------------|--------------------------------------------------------------------------------------------------------------------|
| PRMjson                          | ARRAY [016255]<br>OF BYTE | IN/OUT      | Mémoire tampon de données souhaitée pour l'écriture de<br>la matrice de charge                                     |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID                | IN          | AMS NetID du MainDevice EtherCAT                                                                                   |
| SubDeviceAddr                    | UINT                      | IN          | Adresse du SubDevice EtherCAT                                                                                      |
| AxisNumber                       | USINT                     | IN          | <ul> <li>Axe à partir duquel la matrice de charge doit être lue :</li> <li>0 = axe A</li> <li>1 = axe B</li> </ul> |
| Execute                          | BOOL                      | IN          | Activation du bloc fonctionnel avec flanc montant                                                                  |
| Busy                             | BOOL                      | OUT         | État du bloc fonctionnel (Busy = True : lecture et écriture<br>pas encore terminées)                               |
| Done                             | BOOL                      | OUT         | État du bloc fonctionnel (Done = True : lecture et écriture terminées avec succès)                                 |
| Error                            | BOOL                      | OUT         | État du bloc fonctionnel (Error = True : lecture/écriture erronées)                                                |
| ErrorID                          | UDINT                     | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne                              |
| FBErrorID                        | eFBError                  | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM) [</u> <u>48</u> ])                |
| StringLength                     | UINT                      | OUT         | Nombre d'octets écrits dans l'Array PRMjson                                                                        |

Tab. 14: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_AMS : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## 6.10.1 Déroulement de la lecture et de l'écriture

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_PRM\_LoadMatrix\_AMS :

- 1. Lecture de l'état de Predictive-Maintenance (R100)
- 2. Lecture de la matrice de charge et écriture dans l'Array PRMjson transféré
- 3. Calculer la StringLength de la matrice de charge

## 6.10.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_LoadMatrix : STOBER_PRM_LoadMatrix AMS;
      lExecute: BOOL;
      lAMS NetID: T AmsNetID;
      lSubDeviceAddr: UINT;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      PRMjson: ARRAY [0..16255] OF BYTE;
      StringLength: UINT;
END VAR
lSTOBER LoadMatrix(PRMjson:=PRMjson,
      AmsNetId EtherCAT MainDevice:=lAMS NetID,
      SubDeviceAddr:=lSubDeviceAddr,
      Execute:=lExecute,
      Busy=>1Busy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>1FBErrorID,
      StringLength=>StringLength);
```

# 6.11 STOBER\_PRM\_LoadMatrix\_File

Le bloc fonctionnel lit la matrice de charge du servo-variateur (R118) et la dépose sous forme de fichier dans le répertoire sous le chemin d'accès au fichier transféré.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0
- Bibliothèque Tc2\_MC2 de Beckhoff

## Information

Pour pouvoir lire la matrice de charge, la fonction Predictive Maintenance doit être active dans le servo-variateur.

Information

Comme le transfert d'un axe CN vers le bloc fonctionnel est nécessaire, vous devez créer une liaison entre l'axe CN et le projet API [▶ 9]).

## Paramètre

|   | STOBER_PRM_Lo        | adMatrix_File      |
|---|----------------------|--------------------|
| _ | Execute BOOL         | BOOL Busy          |
| _ | Filepath T_MaxString | BOOL Done          |
|   | Axis AXIS_REF        | BOOL Error         |
|   |                      | UDINT ErrorID      |
|   |                      | eFBError FBErrorID |

Fig. 11: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File : paramètres d'entrée et de sortie

| Paramètre | Type de données | Déclaration | Description                                                                                         |
|-----------|-----------------|-------------|-----------------------------------------------------------------------------------------------------|
| Execute   | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                   |
| Filepath  | T_MaxString     | IN          | Chemin d'accès au fichier du répertoire devant servir à<br>l'écriture du fichier                    |
| Axis      | AXIS_REF        | IN/OUT      | Structure de données de l'axe                                                                       |
| Busy      | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : lecture et écriture<br>pas encore terminées)                |
| Done      | BOOL            | OUT         | État du bloc fonctionnel (Done = True : lecture et écriture terminées avec succès)                  |
| Error     | BOOL            | OUT         | État du bloc fonctionnel (Error = True : lecture/écriture erronées)                                 |
| ErrorID   | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne               |
| FBErrorID | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM) [</u> <u>48]</u> ) |

Tab. 15: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## Structure du nom de fichier

Exemple 1 : Axe 2\_0\_3B96214A.json

| Valeur dans l'exemple | Signification                                 |
|-----------------------|-----------------------------------------------|
| Axe 2                 | Identification d'axe TwinCAT                  |
| 0                     | Axe du servo-variateur (0 = axe A, 1 = axe B) |
| 3B96214A              | Nom de fichier à partir du paramètre R106     |

Tab. 16: Exemple 1 : structure du nom de fichier

## Exemple 2 : Axe 2\_0\_PRM.json

| Valeur dans l'exemple | Signification                                                              |  |
|-----------------------|----------------------------------------------------------------------------|--|
| Axe 2                 | Identification d'axe TwinCAT                                               |  |
| 0                     | Axe du servo-variateur (0 = axe A, 1 = axe B)                              |  |
| PRM                   | Valeur attribuée automatiquement si le paramètre R106 n'est pas disponible |  |

Tab. 17: Exemple 2 : structure du nom de fichier

## 6.11.1 Déroulement de la lecture et de l'écriture

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File :

- 1. Lecture des données d'axe (données d'accès ADS, p. ex. AMS NetID, adresse du SubDevice, type d'axe, ...)
- 2. Lecture de l'état de Predictive-Maintenance (R100)
- 3. Lecture de la matrice de charge
- 4. Calculer la StringLength de la matrice de charge
- 5. Déterminer le nom de fichier de la matrice de charge lue à partir du servo-variateur (R106)
- 6. Déposer la matrice de charge avec StringLength sous forme de fichier dans le répertoire sous le chemin d'accès au fichier transféré

## 6.11.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_LoadMatrix : STOBER_PRM_LoadMatrix_File;
      lAxis: AXIS_REF;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      Filepath: T_MaxString;
END_VAR
lSTOBER_LoadMatrix(Axis:=lAxis,
      Execute:=lExecute,
      Filepath:=Filepath,
      Busy=>lBusy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>lFBErrorID);
```

## 6.12 STOBER\_PRM\_LoadMatrix\_File\_AMS

Le bloc fonctionnel lit la matrice de charge du servo-variateur (R118) et la dépose sous forme de fichier dans le répertoire sous le chemin d'accès au fichier transféré.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.3

### Information

Pour pouvoir lire la matrice de charge, la fonction Predictive Maintenance doit être active dans le servo-variateur.

### Paramètre

|   | STOBER_PRM_LoadMatrix_File_AMS          |                    |
|---|-----------------------------------------|--------------------|
|   | Execute BOOL                            | BOOL Busy          |
|   | Filepath T_MaxString                    | BOOL Done          |
|   | AmsNetId_EtherCAT_MainDevice T_AmsNetID | BOOL Error         |
|   | SubDeviceAddr UINT                      | UDINT ErrorID      |
| _ | AxisNumber USINT                        | eFBError FBErrorID |

Fig. 12: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File\_AMS : paramètres d'entrée et de sortie

| Paramètre                        | Type de données | Déclaration | Description                                                                                                        |
|----------------------------------|-----------------|-------------|--------------------------------------------------------------------------------------------------------------------|
| Execute                          | BOOL            | IN          | Activation du bloc fonctionnel avec flanc montant                                                                  |
| Filepath                         | T_MaxString     | IN          | Chemin d'accès au fichier du répertoire devant servir à l'écriture du fichier                                      |
| AmsNetId_EtherCAT_<br>MainDevice | T_AmsNetID      | IN          | AMS NetID du MainDevice EtherCAT                                                                                   |
| SubDeviceAddr                    | UINT            | IN          | Adresse du SubDevice EtherCAT                                                                                      |
| AxisNumber                       | USINT           | IN          | <ul> <li>Axe à partir duquel la matrice de charge doit être lue :</li> <li>0 = axe A</li> <li>1 = axe B</li> </ul> |
| Busy                             | BOOL            | OUT         | État du bloc fonctionnel (Busy = True : lecture et écriture<br>pas encore terminées)                               |
| Done                             | BOOL            | OUT         | État du bloc fonctionnel (Done = True : lecture et écriture terminées avec succès)                                 |
| Error                            | BOOL            | OUT         | État du bloc fonctionnel (Error = True : lecture/écriture erronées)                                                |
| ErrorID                          | UDINT           | OUT         | Code d'erreur ADS spécifique à Beckhoff des blocs fonctionnels utilisés en interne                                 |
| FBErrorID                        | eFBError        | OUT         | Code d'erreur spécifique au bloc fonctionnel (voir <u>eFBError</u><br>( <u>ENUM) [] 48]</u> )                      |

Tab. 18: Bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File\_AMS : paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## Structure du nom de fichier

Exemple 1 : Axe 2\_0\_3B96214A.json

| Valeur dans l'exemple | Signification                                 |
|-----------------------|-----------------------------------------------|
| Axe 2                 | Identification d'axe TwinCAT                  |
| 0                     | Axe du servo-variateur (0 = axe A, 1 = axe B) |
| 3B96214A              | Nom de fichier à partir du paramètre R106     |

Tab. 19: Exemple 1 : structure du nom de fichier

### Exemple 2 : Axe 2\_0\_PRM.json

| Valeur dans l'exemple | Signification                                                              |
|-----------------------|----------------------------------------------------------------------------|
| Axe 2                 | Identification d'axe TwinCAT                                               |
| 0                     | Axe du servo-variateur (0 = axe A, 1 = axe B)                              |
| PRM                   | Valeur attribuée automatiquement si le paramètre R106 n'est pas disponible |

Tab. 20: Exemple 2 : structure du nom de fichier

## 6.12.1 Déroulement de la lecture et de l'écriture

Les étapes suivantes se déroulent pendant l'exécution du bloc fonctionnel STOBER\_PRM\_LoadMatrix\_File\_AMS :

- 1. Lecture de l'état de Predictive-Maintenance (R100)
- 2. Lecture de la matrice de charge
- 3. Calculer la StringLength de la matrice de charge
- 4. Déterminer le nom de fichier de la matrice de charge lue à partir du servo-variateur (R106)
- 5. Déposer la matrice de charge avec StringLength sous forme de fichier dans le répertoire sous le chemin d'accès au fichier transféré

## 6.12.2 Exemple de code

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_LoadMatrix : STOBER_PRM_LoadMatrix_File_AMS;
      lAMS_NetID: T_AmsNetID;
      lSubDeviceAddr: UINT;
      lAxisNumber: USINT;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      lFBErrorID: STOBER_G6_Util.eFBError;
      Filepath: T_MaxString;
END_VAR
lSTOBER_LoadMatrix(AmsNetId_EtherCAT_MainDevice:=lAMS_NetID,
      SubDeviceAddr:=lSubDeviceAddr,
      Execute:=lExecute,
      AxisNumber:=lAxisNumber,
      Filepath:=Filepath,
      Busy=>1Busy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
      FBErrorID=>lFBErrorID);
```

# 6.13 STOBER\_SDO\_Info

Le bloc fonctionnel détermine si le service SDO Info est actif dans le servo-variateur. Cela facilite l'adressage des éléments des paramètres Array et Record. Lorsque SDO Info est inactif, le sous-index 0 d'un objet SDO correspond à l'élément 0 du paramètre. Lorsque SDO Info est actif, le sous-index 0 d'un objet SDO correspond au nombre d'éléments du paramètre, le sous-index 1 à l'élément 0 du paramètre.

## **Conditions préalables**

- TwinCAT 3 à partir de la version 3.1.4024.40
- Bibliothèque STOBER\_G6\_Util à partir de la version 3.1.2.0

## Paramètre

| BOOL Busy -    |
|----------------|
| BOOL Done -    |
| BOOL Error     |
| UDINT ErrorID  |
| USINT SDO Info |
|                |

Fig. 13: Bloc fonctionnel STOBER\_SDO\_Info : paramètres d'entrée et de sortie

| Type de données | Déclaration                                                       | Description                                                                              |
|-----------------|-------------------------------------------------------------------|------------------------------------------------------------------------------------------|
| BOOL            | IN                                                                | Activation du bloc fonctionnel avec flanc montant                                        |
| T_AmsNetID      | IN                                                                | AMS NetID du MainDevice EtherCAT                                                         |
| UINT            | IN                                                                | Adresse du SubDevice EtherCAT                                                            |
| BOOL            | OUT                                                               | État du bloc fonctionnel (Busy = True : vérification pas<br>encore terminée)             |
| BOOL            | OUT                                                               | État du bloc fonctionnel (Done = True : vérification terminée)                           |
| BOOL            | OUT                                                               | État du bloc fonctionnel (Error = True : vérification erronée)                           |
| UDINT           | OUT                                                               | Code d'erreur ADS spécifique à Beckhoff des blocs<br>fonctionnels utilisés en interne    |
| USINT           | OUT                                                               | État Service SDO Info dans le servo-variateur :<br>• 0 = inactif                         |
|                 | Type de données<br>BOOL<br>UINT<br>BOOL<br>BOOL<br>UDINT<br>USINT | Type de donnéesDéclarationBOOLINT_AmsNetIDINUINTINBOOLOUTBOOLOUTUDINTOUTUDINTOUTUSINTOUT |

Tab. 21: Bloc fonctionnel STOBER\_SDO\_Info: paramètres

Vous trouverez des informations sur les types de données dans la documentation de TwinCAT 3 à l'adresse <u>https://infosys.beckhoff.com/content/1033/tc3\_plc\_intro/2529388939.html?id=3451082169760117126</u>.

## 6.13.1 Exemple de code

SDO\_Info=>SDO\_INFO);

L'exemple de projet suivant sert à l'implémentation dans Texte structuré (ST).

```
PROGRAM MAIN
VAR
      lSTOBER_SDO : STOBER_SDO_Info;
      AMS_NetID:T_AmsNetID;
      SubDeviceAddress: UINT;
      lExecute: BOOL;
      lBusy: BOOL;
      lDone: BOOL;
      lError: BOOL;
      lErrorID: UDINT;
      SDO_INFO: USINT;
END VAR
lSTOBER_SDO(AmsNetId_EtherCAT_MainDevice:=AMS_NetID,
      SubDeviceAddr:=SubDeviceAddress,
      Execute:=lExecute,
      Busy=>lBusy,
      Done=>1Done,
      Error=>lError,
      ErrorID=>lErrorID,
```

# 7 Calcul de l'index

Les coordonnées du paramètre (groupe et ligne) permettent de calculer l'index pour les blocs fonctionnels STOBER\_Action ou STOBER\_Power\_Action.

Information

L'index doit être indiqué dans le format requis par la commande.

Information

Le calcul décrit ci-après n'est valide que pour la conversion des paramètres de chaque fabricant.

Les axes se distinguent par un décalage de 8000 hex. La ligne du paramètre doit être inférieure à 512. L'index est calculé à partir du groupe et de la ligne du paramètre selon les formules suivantes :

- Index axe A = 8192 + (numéro du groupe × 512) + numéro de la ligne
- Index axe B = 40960 + (numéro du groupe × 512) + numéro de la ligne

### Exemple de calcul pour l'axe A

Calcul du paramètre I38 :

Numéro du groupe = 8

Numéro de la ligne = 38

Index = 8192 + (8 × 512) + 38 = 12326 = 3026 hex

### Numéro du groupe

Le tableau ci-dessous contient le numéro du groupe nécessaire au calcul de l'index.

| Groupe                                                 | Numéro |
|--------------------------------------------------------|--------|
| A : Servo-variateur                                    | 0      |
| B : Moteur                                             | 1      |
| C : Machine                                            | 2      |
| D : Valeur de consigne                                 | 3      |
| E : Afficher                                           | 4      |
| F : Bornes                                             | 5      |
| G : Technologie                                        | 6      |
| H : Encodeur                                           | 7      |
| I : Motion                                             | 8      |
| J : Blocs de déplacement                               | 9      |
| K : Panneau de commande                                | 10     |
| M : Profils                                            | 12     |
| P : Paramètres personnalisés                           | 15     |
| Q : Paramètres personnalisés, dépendants de l'instance | 16     |
| R : Données de production                              | 17     |
| S : Sécurité                                           | 18     |
| T : Scope                                              | 19     |
| U : Fonctions de protection                            | 20     |
| Z : Compteur de dérangements                           | 25     |

Tab. 22: Bloc fonctionnel STOBER\_Action : groupes et numéros de paramètres pour le calcul de l'index

# 8 Diagnostic

Pour le diagnostic en cas d'erreur (Error = True), les blocs fonctionnels émettent des codes d'erreur via les sorties ErrorID et FBErrorID.

S'il s'agit d'une erreur à l'intérieur des blocs fonctionnels spécifiques à TwinCAT, le code d'erreur ADS est émis à la sortie ErrorID. Ces codes d'erreur peuvent être référencés à l'aide de la documentation de la société Beckhoff Automation GmbH & Co. KG.

S'il s'agit d'une erreur spécifique au bloc, elle est indiquée sur la sortie FBErrorID.

## Fichiers journaux pour un diagnostic avancé

Lors de l'exécution des blocs fonctionnels STOBER\_Backup\_Restore\_Initiator ou STOBER\_Backup\_Restore, différents fichiers journaux sont créés dans le répertoire de votre projet, qui servent au diagnostic avancé en cas d'erreur.

| Fichier                                      | Description                                                                                                                                                                                                                                                                                                                                                    |
|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Fichier dans le répertoire log               | Le répertoire est créé automatiquement dès que l'un des deux blocs fonctionnels est<br>exécuté pour la première fois. Chaque fois que le bloc fonctionnel<br>STOBER_Backup_Restore est exécuté, un fichier journal contenant les informations sur le<br>mode script est enregistré dans ce répertoire.                                                         |
| Fichier Tc_Log.log                           | Fichier journal spécifique au bloc contenant des informations sur le SubDevice EtherCAT<br>pour lequel l'un des deux blocs fonctionnels a été exécuté. Si le bloc fonctionnel<br>STOBER_Backup_Restore a été exécuté, le type de service est également documenté. Le<br>fichier contient également des informations sur la réussite ou l'échec de l'exécution. |
| Fichier DeviceInfo.txt                       | Fichier créé automatiquement, contenant toutes les adresses des SubDevices et les numéros de production des servo-variateurs dans le réseau EtherCAT. <b>PRUDENCE ! Ce fichier ne doit en aucun être modifié ou supprimé.</b>                                                                                                                                  |
| Fichiers dans le répertoire<br>SaveOriginals | Le répertoire est créé automatiquement dès qu'un service de sauvegarde est exécuté pour<br>la première fois. Lors de chaque service de sauvegarde, le fichier de projet DS6 actuel est<br>déplacé vers le répertoire SaveOriginals. Le fichier est marqué de la date et de l'heure<br>actuelles.                                                               |

Tab. 23: Bloc fonctionnel STOBER\_Backup\_Restore\_Initiator ou STOBER\_Backup\_Restore : fichiers journaux dans le répertoire du projet

# 8.1 eFBError (ENUM)

| Erreur (FBErrorID)           | Nº  | Cause                                                                                                                        | Vérification et mesures à prendre                                                                                                                                                                                                                                         |
|------------------------------|-----|------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| NO_ERROR                     | 0   | Aucune erreur spécifique au bloc n'est survenue                                                                              | _                                                                                                                                                                                                                                                                         |
| HOMING_METHOD_<br>INACTIVE   | 1   | Paramètre A586 = 0: Inactif                                                                                                  | Dans le paramètre A586, sélectionnez la méthode de référençage à appliquer lors de l'exécution du bloc.                                                                                                                                                                   |
| AXIS_NOT_ENABLED             | 2   | L'axe n'est pas autorisé                                                                                                     | Autorisez l'axe du servo-variateur (cause Mise en marche désactivée : E47).                                                                                                                                                                                               |
| WRONG_MODE                   | 3   | Mode d'exploitation<br>incorrect pour le référençage<br>par le servo-variateur                                               | <ul> <li>Passez à l'un des modes d'exploitation suivants<br/>(A541) :</li> <li>8: Cyclic synchronous position mode</li> <li>9: Cyclic synchronous velocity mode</li> <li>10: Cyclic synchronous torque mode</li> <li>6: Homing mode</li> </ul>                            |
| NO_DEVICE_LINK               | 4   | Le passage au mode<br>d'exploitation vers 6: Homing<br>mode n'a pas fonctionné                                               | —                                                                                                                                                                                                                                                                         |
| AXIS_ERROR                   | 5   | Le servo-variateur ou l'axe sont en dérangement                                                                              | Éliminez la cause du dérangement et acquittez le dérangement.                                                                                                                                                                                                             |
| COMMAND_ABORTED              | 6   | Le référençage a été annulé                                                                                                  | Le servo-variateur est entré en dérangement pendant<br>le référençage ou l'autorisation a été supprimée.<br>Éliminez la cause du dérangement et acquittez le<br>dérangement. Le servo-variateur doit être autorisé<br>jusqu'à la fin du référençage.                      |
| HOMING_TIMEOUT               | 7   | Le référençage n'a pas pu<br>être terminé dans le délai<br>indiqué                                                           | Prolongez le délai indiqué. Vérifiez si la méthode de<br>référençage correcte est sélectionnée et si les<br>conditions de référençage peuvent être remplies.                                                                                                              |
| WRONG_AMS_NETID              | 100 | AMS NetID erroné                                                                                                             | Reliez l'AMS NetID et la variable correspondante de type T_AmsNetId.                                                                                                                                                                                                      |
| WRONG_FILE_PATH              | 101 | Le chemin d'accès au fichier<br>indiqué vers le répertoire du<br>fichier de projet est<br>introuvable                        | Vérifiez et corrigez le chemin d'accès au fichier vers le<br>répertoire du fichier de projet sur la commande<br>EtherCAT.                                                                                                                                                 |
| WRONG_DS6_PROCESS_<br>PATH   | 103 | Le chemin d'accès au fichier<br>indiqué vers le répertoire de<br>DriveControlSuite est<br>introuvable                        | Vérifiez et corrigez le chemin d'accès au fichier vers le<br>répertoire du DriveControlSuite sur la commande<br>EtherCAT.                                                                                                                                                 |
| WRONG_ETHERCAT_<br>REVISION  | 105 | Numéro de révision<br>EtherCAT < 6000                                                                                        | Numéro de révision du servo-variateur < 6000 (objet<br>de communication Revision Number selon CiA 301 ;<br>objet 1018 hex, sous-index 3 hex). Créez un projet DS6<br>avec un modèle EtherCAT actuel.                                                                      |
| INVALID_BOXNAME              | 107 | Le paramètre A251 ne<br>contient aucune valeur<br>valide                                                                     | Exécutez le bloc fonctionnel STOBER_BoxName.                                                                                                                                                                                                                              |
| WRONG_SERVICE_TYPE_<br>INPUT | 109 | Le service demandé ne<br>concorde pas avec le type de<br>service demandé par le bloc<br>fonctionnel<br>STOBER_Backup_Restore | Pour Servicetype, sélectionnez le service correct<br>correspondant à la sortie iAction du bloc fonctionnel<br>STOBER_Backup_Restore_Initiator. Lors de la première<br>utilisation du bloc fonctionnel, le Servicetype Restore<br>doit être sélectionné (Servicetype = 2). |

| Erreur (FBErrorID)                         | Nº  | Cause                                                                                 | Vérification et mesures à prendre                                                                                                                                                                                                                                                                                                                                                             |
|--------------------------------------------|-----|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| TIMEOUT_EXCEED                             | 111 | Le mode script n'a pas pu<br>être exécuté dans le délai<br>prédéfini                  | Assurez-vous que DriveControlSuite n'est pas ouverte<br>sur la commande EtherCAT pendant l'exécution du<br>bloc fonctionnel. Veillez à ne pas exécuter plusieurs<br>instances du bloc fonctionnel en même temps, mais<br>exécutez plutôt les instances les unes après les autres.                                                                                                             |
| NO_STOBER_SUBDEVICE_<br>IN_CONFIGURATION   | 113 | Aucun SubDevice STOBER<br>n'a été trouvé dans la<br>configuration TwinCAT             | Assurez-vous qu'il existe un servo-variateur STOBER dans la configuration TwinCAT.                                                                                                                                                                                                                                                                                                            |
| ERROR_SAVING_VALUES                        | 115 | L'action Enregistrement les<br>valeurs sur le servo-variateur<br>a renvoyé une erreur | Vérifiez via le paramètre E61[0] si une carte SD ou un<br>Paramodul sont insérés et ont été détectés. Vérifiez via<br>E68 si le support de stockage est éventuellement<br>protégé en écriture.                                                                                                                                                                                                |
| UNEXPECTED_VALUE                           | 117 | Un paramètre transféré a<br>une valeur inattendue                                     | _                                                                                                                                                                                                                                                                                                                                                                                             |
| DEVICE_INFO_TXT_TOO_<br>LONG               | 119 | DeviceInfo.txt contient plus<br>de 200 servo-variateurs                               | Réduisez le nombre de servo-variateurs STOBER à 200<br>au maximum.                                                                                                                                                                                                                                                                                                                            |
| MAX_SUBDEVICES_<br>NUMBER_REACHED          | 200 | Nombre maximal de<br>SubDevices EtherCAT<br>connectés dépassé                         | Réduisez le nombre de SubDevices connectés au bloc fonctionnel à 2000 au maximum.                                                                                                                                                                                                                                                                                                             |
| PROJECT_NOT_FOUND                          | 201 | Le servo-variateur n'a pas<br>été trouvé dans le projet                               | Le servo-variateur pour lequel vous souhaitez exécuter<br>le bloc fonctionnel STOBER_Backup_Restore n'a pu<br>être trouvé dans aucun fichier (*.ds6) du dossier de<br>projet. Assurez-vous que vous avez entré le nom de<br>l'appareil API depuis votre projet EtherCAT dans le<br>projet DS6. Vérifiez les fichiers journaux dans le<br>répertoire de votre projet pour plus d'informations. |
| MORE_THAN_ONE_<br>PROJECT_FOUND            | 203 | Le servo-variateur a été<br>trouvé dans plusieurs projets                             | Le servo-variateur pour lequel vous souhaitez exécuter<br>le bloc fonctionnel STOBER_Backup_Restore a été<br>trouvé dans plusieurs projets. Vérifiez les fichiers<br>journaux dans le répertoire de votre projet pour plus<br>d'informations.                                                                                                                                                 |
| OPEN_PROJECT_ERROR                         | 205 | Impossible d'ouvrir le projet                                                         | Assurez-vous que le projet DS6 indiqué n'est pas déjà<br>ouvert. Vérifiez les fichiers journaux dans le dossier de<br>votre projet pour plus d'informations.                                                                                                                                                                                                                                  |
| CONNECTION-ERROR                           | 207 | Erreur de connexion                                                                   | La connexion entre l'ordinateur de la commande et le<br>servo-variateur n'a pas pu être établie. Vérifiez la<br>liaison par câble Ethernet entre l'ordinateur de la<br>commande et le servo-variateur (interface de<br>maintenance X9).                                                                                                                                                       |
| ONLINE_ERROR                               | 209 | Planification erronée                                                                 | Assurez-vous que la version de micrologiciel, le servo-<br>variateur et le module optionnel sont correctement<br>planifiés dans votre projet DS6.                                                                                                                                                                                                                                             |
| ALL_SUBDEVICES_NOT_IN<br>_OPERATIONAL_MODE | 300 | Pas tous les SubDevices<br>STOBER dans l'état<br>Operational                          | Assurez-vous que tous les SubDevices sont dans l'état<br>Operational. L'erreur reste active jusqu'à ce que tous<br>les SubDevices soient opérationnels.                                                                                                                                                                                                                                       |
| INVALID_OFFSET                             | 301 | Décalage non valide lors de<br>la lecture de R118                                     | _                                                                                                                                                                                                                                                                                                                                                                                             |
| WRONG_AXIS                                 | 302 | Mauvaise connexion de l'axe<br>du servo-variateur                                     | _                                                                                                                                                                                                                                                                                                                                                                                             |
| PREDICTIVE_<br>MAINTENANCE_INACTIVE        | 303 | La Predictive Maintenance<br>est inactive                                             | Activez la Predictive Maintenance pour le servo-<br>variateur et exécutez l'action Enregistrer les valeurs<br>(A00) ainsi qu'un redémarrage du servo-variateur.                                                                                                                                                                                                                               |

| Erreur (FBErrorID)                 | N⁰  | Cause                                                                                                                                                                                                                                                        | Vérification et mesures à prendre                                                                                                                                                                                                                                                                                                                                                                                                                               |
|------------------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| JSON_LENGTH_ZERO                   | 304 | La matrice de charge n'a pas<br>pu être lue correctement                                                                                                                                                                                                     | Vérifiez si la Predictive Maintenance est activée.                                                                                                                                                                                                                                                                                                                                                                                                              |
| JSON_INCOMPLETE                    | 305 | La matrice de charge n'a pas<br>pu être lue complètement                                                                                                                                                                                                     | Vérifiez s'il existe des accès concurrents au paramètre<br>R118, p. ex. par le DS6.                                                                                                                                                                                                                                                                                                                                                                             |
| MASTER_NOT_IN_<br>OPERATIONAL_MODE | 400 | MainDevice pas dans l'état<br>Operational                                                                                                                                                                                                                    | Assurez-vous que le MainDevice EtherCAT est dans l'état Operational.                                                                                                                                                                                                                                                                                                                                                                                            |
| ABORTED                            | 401 | Autorisation désactivée par<br>l'utilisateur ou à la suite d'un<br>dérangement de l'appareil                                                                                                                                                                 | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| TEMPORISATION                      | 402 | Autorisation activée non<br>activée dans les 30 s suivant<br>le démarrage de l'action                                                                                                                                                                        | Vérifiez les conditions générales.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ILLEGAL                            | 403 | Activation de l'action dans<br>l'état ≠ 2: Activable (E48),<br>fonctionnement du moteur<br>dans le mode de commande<br>sans régulation vectorielle ni<br>encodeur moteur (B20, B26)<br>ou utilisation des freins avec<br>commande de frein inactive<br>(F00) | Vérifiez les conditions générales.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AXIS_LOAD                          | 404 | L'axe s'est déplacé en cas<br>d'Autorisation activée et de<br>commande des freins par<br>déblocage                                                                                                                                                           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| PHASE_ORDER                        | 405 | La séquence de phase ne<br>concorde pas avec la<br>direction de comptage de<br>l'encodeur moteur                                                                                                                                                             | Vérifiez les conditions générales.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MOTOR_POLES                        | 406 | La distance prédéfinie par<br>voie électrique ne<br>correspond pas à la distance<br>parcourue mécaniquement                                                                                                                                                  | <ul> <li>Vérifiez et corrigez éventuellement les réglages<br/>suivants :</li> <li>Nombre de pôles du moteur brushless synchrone<br/>ou du moteur asynchrone et réglage dans B10</li> <li>Pas polaire du moteur linéaire et réglage dans B16</li> <li>Ajustage de l'encodeur moteur (paire de valeurs<br/>compteur/dénominateur)</li> <li>Pas de blocage mécanique de la sortie</li> <li>Couple/force suffisant(e) pour l'essai de<br/>fonctionnement</li> </ul> |
| TEST_RUN                           | 408 | Échec de l'essai de<br>fonctionnement avec le<br>décalage de commutation<br>calculé                                                                                                                                                                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| REMOVE_ENABLE                      | 498 | Autorisation déjà active au<br>démarrage de l'action                                                                                                                                                                                                         | Supprimez l'autorisation de l'axe.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| AXIS_ENABLED                       | 410 | Axe autorisé lors de<br>l'exécution du bloc<br>fonctionnel                                                                                                                                                                                                   | Supprimez l'autorisation de l'axe.                                                                                                                                                                                                                                                                                                                                                                                                                              |
| GENERAL_ERROR                      | 413 | _                                                                                                                                                                                                                                                            | -                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

Tab. 24: Erreurs spécifiques aux blocs : eFBError (ENUM)

# 9 Annexe

## 9.1 Informations complémentaires

Les documentations listées ci-dessous vous fournissent d'autres informations pertinentes sur la 6e génération de servovariateurs STOBER. Vous trouverez l'état actuel de la documentation dans notre centre de téléchargement sous : <u>http://www.stoeber.de/fr/download</u>.

Entrez le n° ID de la documentation dans le champ de recherche.

## Servo-variateurs SC6, SI6

| Titre                                | Documentation | Contenus                                                                                                                                                                     | Nº ID  |
|--------------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Servo-variateur SC6                  | Manuel        | Structure du système, caractéristiques techniques,<br>planification, stockage, montage, raccordement, mise<br>en service, fonctionnement, service après-vente,<br>diagnostic | 442791 |
| Système modulaire avec SI6 et PS6    | Manuel        | Structure du système, caractéristiques techniques,<br>planification, stockage, montage, raccordement, mise<br>en service, fonctionnement, service après-vente,<br>diagnostic | 442729 |
| Communication EtherCAT – SC6,<br>SI6 | Manuel        | Installation électrique, transfert de données, mise en service, diagnostic, informations complémentaires                                                                     | 443026 |
| Application CiA 402 – SC6, SI6       | Manuel        | Planification, configuration, paramétrage, essai de fonctionnement, informations complémentaires                                                                             | 443081 |

## Servo-variateur SD6

| Titre                        | Documentation | Contenus                                                                                                                                                                     | Nº ID  |
|------------------------------|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------|
| Servo-variateur SD6          | Manuel        | Structure du système, caractéristiques techniques,<br>planification, stockage, montage, raccordement, mise<br>en service, fonctionnement, service après-vente,<br>diagnostic | 442589 |
| Communication EtherCAT – SD6 | Manuel        | Montage, installation électrique, transfert de<br>données, mise en service, diagnostic, informations<br>complémentaires                                                      | 443037 |
| Application CiA 402 – SD6    | Manuel        | Planification, configuration, paramétrage, essai de fonctionnement, informations complémentaires                                                                             | 443078 |

Une version de base gratuite du logiciel d'automatisation TwinCAT 3 est disponible à l'adresse <u>https://www.beckhoff.com/fr-fr/products/automation/twincat/te1xxx-twincat-3-engineering/te1000.html</u>.

# 9.2 Abréviations

| Abréviation | Signification                                                    |
|-------------|------------------------------------------------------------------|
| ADS         | Automation Device Specification                                  |
| AMS         | Automation Message Specification                                 |
| CiA         | CAN in Automation                                                |
| СоЕ         | CANopen over EtherCAT                                            |
| EtherCAT    | Ethernet for Control Automation Technology                       |
| IP          | Internet Protocol (protocole Internet)                           |
| MDevice     | MainDevice                                                       |
| NC          | Numerical Control (commande numérique)                           |
| PDO         | Process Data Objects (objets de données process)                 |
| PLC         | Programmable Logic Controller (automate programmable industriel) |
| SDO         | Service Data Objects (objets données de service)                 |
| API         | Automate Programmable Industriel                                 |
| ST          | Texte structuré                                                  |
| SubDevice   | SubordinateDevice                                                |
| TwinCAT     | The Windows Control and Automation Technology                    |

# 10 Contact

## 10.1 Conseil, service après-vente, adresse

Nous nous ferons un plaisir de vous aider !

Vous trouverez sur notre site Web de nombreux services et informations concernant nos produits :

http://www.stoeber.de/fr/service

Pour tout renseignement complémentaire ou des informations personnalisées, n'hésitez pas à contacter notre service de conseil et de support :

http://www.stoeber.de/fr/support

Vous avez besoin de notre System Support : Tél. +49 7231 582-3060 systemsupport@stoeber.de

Vous avez besoin d'un appareil de rechange : Tél. +49 7231 582-1128 replace@stoeber.de

Assistance téléphonique 24 heures sur 24 : Tél. +49 7231 582-3000

Notre adresse : STÖBER Antriebstechnik GmbH + Co. KG Kieselbronner Straße 12 75177 Pforzheim, Allemagne

## 10.2 Votre avis nous intéresse

Nous avons rédigé la présente documentation avec le plus grand soin afin de vous aider à étendre et perfectionner, de manière profitable et efficiente, vos connaissances spécifiques à notre produit.

Vos suggestions, avis, souhaits et critiques constructives nous aident à garantir et perfectionner la qualité de notre documentation.

Si vous désirez nous contacter pour une des raisons susmentionnées, n'hésitez pas à nous écrire à l'adresse : documentation@stoeber.de

Nous vous remercions pour votre intérêt. L'équipe de rédaction STOBER

# 10.3 À l'écoute de nos clients dans le monde entier

Nous vous assistons avec compétence et disponibilité et intervenons dans plus de 40 pays :

### **STOBER AUSTRIA**

www.stoeber.at +43 7613 7600-0 sales@stoeber.at

STOBER FRANCE www.stober.fr +33 478 98 91 80 sales@stober.fr

STOBER HUNGARY www.stoeber.de +36 53 5011140 info@emtc.hu

STOBER JAPAN

www.stober.co.jp +81-3-5875-7583 sales@stober.co.jp

STOBER TAIWAN www.stober.tw +886 4 2358 6089 sales@stober.tw

STOBER UK

www.stober.co.uk +44 1543 458 858 sales@stober.co.uk STOBER CHINA www.stoeber.cn +86 512 5320 8850 sales@stoeber.cn

STOBER Germany www.stoeber.de +49 4 7231 582-0 sales@stoeber.de

STOBER ITALY www.stober.it +39 02 93909570 sales@stober.it

**STOBER SWITZERLAND** www.stoeber.ch +41 56 496 96 50 sales@stoeber.ch

## STOBER TURKEY

www.stober.com +90 216 510 2290 sales-turkey@stober.com

STOBER USA www.stober.com +1 606 759 5090 sales@stober.com

# Index des tableaux

| Tab. 1  | Blocs fonctionnels pour TwinCAT 3                                                                                             | 10 |
|---------|-------------------------------------------------------------------------------------------------------------------------------|----|
| Tab. 2  | Bloc fonctionnel STOBER_BoxName : paramètres                                                                                  | 11 |
| Tab. 3  | Bloc fonctionnel STOBER_Backup_Restore_Initiator : paramètres                                                                 | 13 |
| Tab. 4  | Bloc fonctionnel STOBER_Backup_Restore : paramètres                                                                           | 15 |
| Tab. 5  | Bloc fonctionnel STOBER_Backup_Restore : type de service                                                                      | 15 |
| Tab. 6  | Bloc fonctionnel STOBER_MC_HOME : paramètres                                                                                  | 20 |
| Tab. 7  | Bloc fonctionnel STOBER_MC_HOME-REF : paramètres                                                                              | 23 |
| Tab. 8  | Bloc fonctionnel STOBER_Action : paramètres                                                                                   | 26 |
| Tab. 9  | Bloc fonctionnel STOBER_Action : exemples d'actions sans autorisation requise                                                 | 27 |
| Tab. 10 | Bloc fonctionnel STOBER_Power_Action : paramètres                                                                             | 29 |
| Tab. 11 | Bloc fonctionnel STOBER_Power_Action : exemples d'actions nécessitant une autorisation                                        | 29 |
| Tab. 12 | Bloc fonctionnel STOBER_Phase_Test : paramètres                                                                               | 32 |
| Tab. 13 | Bloc fonctionnel STOBER_PRM_LoadMatrix : paramètres                                                                           | 34 |
| Tab. 14 | Bloc fonctionnel STOBER_PRM_LoadMatrix_AMS : paramètres                                                                       | 36 |
| Tab. 15 | Bloc fonctionnel STOBER_PRM_LoadMatrix_File : paramètres                                                                      | 38 |
| Tab. 16 | Exemple 1 : structure du nom de fichier                                                                                       | 39 |
| Tab. 17 | Exemple 2 : structure du nom de fichier                                                                                       | 39 |
| Tab. 18 | Bloc fonctionnel STOBER_PRM_LoadMatrix_File_AMS : paramètres                                                                  | 41 |
| Tab. 19 | Exemple 1 : structure du nom de fichier                                                                                       | 42 |
| Tab. 20 | Exemple 2 : structure du nom de fichier                                                                                       | 42 |
| Tab. 21 | Bloc fonctionnel STOBER_SDO_Info: paramètres                                                                                  | 44 |
| Tab. 22 | Bloc fonctionnel STOBER_Action : groupes et numéros de paramètres pour le calcul de l'index                                   | 46 |
| Tab. 23 | Bloc fonctionnel STOBER_Backup_Restore_Initiator ou STOBER_Backup_Restore : fichiers journaux dans<br>le répertoire du projet | 47 |
| Tab. 24 | Erreurs spécifiques aux blocs : eFBError (ENUM)                                                                               | 48 |





05/2024

STÖBER Antriebstechnik GmbH + Co. KG Kieselbronner Str. 12 75177 Pforzheim Germany Tel. +49 7231 582-0 mail@stoeber.de www.stober.com

24 h Service Hotline +49 7231 582-3000

www.stober.com