

CANopen® Operation manual

Fundamentals

Communication

Parameters

V 5.6-H or later	
09/2013	en

STOBER _

Table of contents

1	Introdu	uction	5
	1.1	Purpose of the manual	5
	1.2	Readers	5
	1.3	Other manuals	5
	1.4	Further support	6
2	Notes	on Safety	7
	2.1	Component part of the product	7
	2.2	Operation in accordance with its intended use	7
	2.3	Qualified personnel	8
	2.4	Transportation and storage	8
	2.5	Installation and connection	9
	2.6	Service	9
	2.7	Disposal	9
	2.8	Presentation of notes on safety	10
3	Mount	ing	11
	3.1	Install in MDS 5000 or SDS 5000	11
	3.2	Installation in the FDS 5000	14
4	Electri	cal installation	17
	4.1	Setup	17
	4.2	Connection	18
	4.2.1	Cable specifications	18
	4.2.2	Shielding	18
	4.2.3	Terminating resistance	19
5	Funda	mentals of CAN Bus	20
	5.1	CANopen®	20
	5.2	NMT state machine	20
	5.3 STÖE	Parameters in the CANopen® system of the 5th generation of BER inverters	21
6	User i	nterface of the CAN 5000	22

Table of contents

STÖBER ____

Operation manual

7	Setup	of communication	24
	7.1	Telegram Service	24
	7.1.1	Identifier	25
	7.2	Pre-defined Connection Set	26
	7.3	Dynamic Distribution	28
	7.3.1	Procedure	28
	7.3.2	Example 1	29
	7.3.3	Example 2	29
	7.3.4	Example 3	29
8	Data t	ransmission with PDO and SDO	30
	8.1	Process data transmission with PDO	31
	8.1.1	Process data mapping	31
	8.1.2	Transmission parameters	33
	8.1.3	Parameters of the PDO channels	35
	8.2	Parameter transmission with SDO	39
	8.2.1	SDO channels	40
	8.2.2	Expedited Transfer	40
	8.2.3	Segmented Transfer	42
	8.2.4	Error codes for SDO services	47
9	Furthe	er communication objects	48
	9.1	NMT	48
	9.2	SYNC	49
	9.3	Emergency	50
	9.4	Error control protocols	52
	9.4.1	BOOT-UP	52
	9.4.2	Node-Guarding	53
	9.4.3	Heartbeat	54

10 Simple commissioning	
11 Parameter list	57
11.1 List of the CANopen® objects	57
11.2 List of the drive parameters	63
12 List of literature	64

WE KEEP THINGS MOVING

1 Introduction

1.1 Purpose of the manual

This manual gives you information on the connection of the 5th generation of STÖBER inverters to the CANopen[®] fieldbus system. The structure of CANopen[®] and the principal procedures are also discussed.

Goals of the manual:

- Provide you with a basic knowledge of CANopen[®] communication.
- Offer you support when you design an application and configure communication.

1.2 Readers

Users who are familiar with the control of drive systems and have a knowledge of commissioning inverter systems are the target group of this manual.

1.3 Other manuals

The documentation of the MDS 5000 includes the following manuals:

Manual	Contents	ID	Latest version ^{a)}
Commissioning Instructions	Reinstallation, replacement, function test	442297	V 5.6-H
Projecting manual	Installation and connection	442273	V 5.6-H
Operating manual	Set up the inverter	442285	V 5.6-H

a) At the time of publication. You can find all versions at www.stoeber.de > Products > Doc Center.

The documentation of the FDS 5000 includes the following manuals:

Manual	Contents	ID	Latest version ^{a)}
Commissioning Instructions	Reinstallation, replacement, function test	442293	V 5.6-H
Projecting manual	Installation and connection	442269	V 5.6-H
Operating manual	Set up the inverter	442281	V 5.6-H

a) At the time of publication. You can find all versions at www.stoeber.de > Products > Doc Center.

The documentation of the SDS 5000 includes the following manuals:

Manual	Contents	ID	Latest version ^{a)}
Commissioning Instructions	Reinstallation, replacement, function test	442301	V 5.6-H
Projecting manual	Installation and connection	442277	V 5.6-H
Operating manual	Set up the inverter	442289	V 5.6-H

a) At the time of publication. You can find all versions at www.stoeber.de > Products > Doc Center.

STÖBER .

You can find information on the POSITool software in the following manuals:

Manual	Contents	ID	Latest version ^{a)}
POSITool operating manual	Information on the basic functions of POSITool	442233	V 5.6-H
Programming manual	Information on programming with POSITool	441693	V 5.6-H

a) At the time of publication. You can find all versions at www.stoeber.de > Products > Doc Center.

Note that the programming functionality of POSITool can only be used after training by STÖBER ANTRIEBSTECHNIK. You can find information on training at www. stoeber.de

1.4 Further support

If you have technical questions that are not answered by this document, please contact:

- Phone: +49 7231 582-3060
- E-mail: applications@stoeber.de

If you have questions about the documentation, please contact:

E-mail: electronics@stoeber.de

If you have questions about training sessions, please contact:

• E-mail: training@stoeber.de

Notes on Safety 2

The devices may cause risks. For these reasons, comply with the following:

- The safety notes listed in the following sections and points
- The technical rules and regulations.

STOBER

In addition, always read the appropriate documentation. STÖBER ANTRIEBSTECHNIK GmbH + Co. KG accepts no liability for damages caused by non-adherence to the instructions or applicable regulations. Subject to technical changes to improve the devices without prior notice. This documentation is purely a product description. It does not represent promised properties in the sense of warranty law.

2.1 Component part of the product

The technical documentation is a component part of a product.

- Since the technical documentation contains important information, always keep it handy in the vicinity of the device until the machine is disposed of.
- If the product is sold, disposed of, or rented out, always include the technical documentation with the product.

2.2 Operation in accordance with its intended use

The CAN 5000 accessory is only intended for establishing communication between devices from the 5th generation of STÖBER inverters and a CANopen® network.

Improper use includes integration in other communication networks.

2.3 Qualified personnel

Since the devices may harbor residual risks, all configuration, transportation, installation and commissioning tasks including operation and disposal may only be performed by trained personnel who are aware of the possible risks. Personnel must have the qualifications required for the job. The following table lists examples of occupational qualifications for the jobs:

Activity	Possible occupational qualifications
Transportation and storage	Worker skilled in storage logistics or comparable training
Configuration	 Graduate engineer (electro-technology or electrical power technology) Technician (m/f) (electro-technology)
Installation and connection	Electronics technician (m/f)
Commissioning (of a standard application)	- Technician (m/f) (electro-technology) - Master electro technician (m/f)
Programming	Graduate engineer (electro-technology or electrical power technology)
Operation	 Technician (m/f) (electro-technology) Master electro technician (m/f)
Disposal	Electronics technician (m/f)

Tab. 2-1: examples of occupational qualifications

In addition, the valid regulations, the legal requirements, the reference books, this technical documentation and, in particular, the safety information contained therein must be carefully

- read
- understood and
- complied with

2.4 Transportation and storage

Inspect the delivery for any transport damage immediately after you receive it. Notify any damage to the transport company immediately. Do not operate the product if damaged. Store the device in a dry and dust-free room if you do not install it immediately

2.5 Installation and connection

The accessory installation instructions allow the following actions during the installation of accessories:

• The housing in the upper slot can be opened.

Opening the housing in another place or for other purposes is not permitted.

Installation and connection work are only permitted after the device has been isolated from the power!

Apply the 5 safety rules in the order stated before performing any work on the machine:

- 1. Enable. Also enable the auxiliary circuits.
- 2. Secure against restart.
- 3. Check that voltage is not present.
- 4. Earth and short circuit.
- 5. Cover adjacent live parts.

Information

Note that the discharge time of the DC link capacitors is 5 minutes. You can only determine the absence of voltage after this time period.

Afterwards you can carry out the work.

2.6 Service

Repairs must only be performed by STÖBER ANTRIEBSTECHNIK GmbH + Co. KG. Send faulty devices with a fault description to: STÖBER ANTRIEBSTECHNIK GmbH + Co. KG Abteilung VS-EL Kieselbronner Str.12 75177 Pforzheim, Germany GERMANY

2.7 Disposal

Please comply with the latest national and regional regulations! Dispose of the individual parts separately depending on their nature and currently valid regulations such as, for example:

- Electronic scrap (PCBs)
- Plastic
- Sheet metal
- Copper
- Aluminum

2.8 **Presentation of notes on safety**

NOTICE

Notice

means that property damage may occur

▶ if the stated precautionary measures are not taken.

Caution

with warning triangle means that minor injury may occur

▶ if the stated precautionary measures are not taken.

WARNING!

Warning

means that there may be a serious danger of death

if the stated precautionary measures are not taken.

\land DANGER!

Danger

means that serious danger of death exists

▶ if the stated precautionary measures are not taken.

Information

indicates important information about the product or a highlighted portion of the documentation which requires special attention.

3 Mounting

The fieldbus module CANopen[®] DS-301 (CAN 5000) must first be installed before the inverter of the 5th generation of STÖBER inverters can be integrated in a CAN bus system.

We recommend ordering the option card when you order the inverter since the card will already have been installed by STÖBER ANTRIEBSTECHNIK before delivery.

If you install the option card yourself, proceed as described in the following sections.

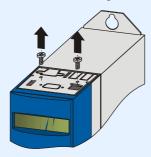
3.1 Install in MDS 5000 or SDS 5000

WARNING!

Danger of injury/death and property damage due to electric shock!

Before installing accessories, turn off all voltage supplies! Then wait 5 minutes for the DC link capacitors to discharge. Never begin with accessory installation until after this!

Danger of property damage due to electrostatic discharge, among others!

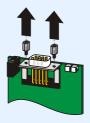

- Provide suitable protective measures while handling open PCBs (e.g., ESD clothing, environment free of dirt and grease).
- Do not touch the contact surfaces.

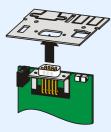
You will need the following tools to install the CAN 5000:

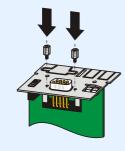
- TX10 Torx screwdriver
- Pliers
- Hexagon socket wrench, 4.5 mm

Installing the CAN 5000

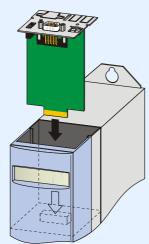
1. Unscrew the mounting screws and remove the cover plate:



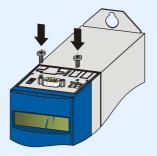

2. Remove the punched out metal section with the pliers:


3. Remove the screws from the option PCB:

4. Stick the sub D plug connector of the PCB through the plate from below:



5. Secure the PCB to the plate with the screw in step 3:



6. Insert the option PCB in the inverter so that the gold contacts slide into the black terminal block:

7. Secure the plate to the inverter with the mounting screws:

 \Rightarrow You have installed the accessory.

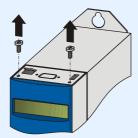
3.2 Installation in the FDS 5000

WARNING!

Danger of injury/death and property damage due to electric shock!

Before installing accessories, turn off all voltage supplies! Then wait 5 minutes for the DC link capacitors to discharge. Never begin with accessory installation until after this!

Danger of property damage due to electrostatic discharge, among others!


- Provide suitable protective measures while handling open PCBs (e.g., ESD clothing, environment free of dirt and grease).
- Do not touch the contact surfaces.

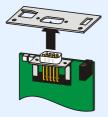
You will need the following tools to install the CAN 5000:

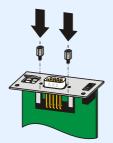

- TX10 Torx screwdriver
- Pliers
- Hexagon socket wrench, 4.5 mm

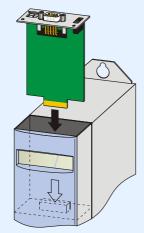
Installing the CAN 5000 in an FDS 5000

1. Unscrew the mounting screws and remove the cover plate:

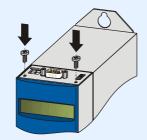
2. Remove the punched out metal section with the pliers:


WE KEEP THINGS MOVIN


3. Remove the screws from the option PCB:


4. Stick the sub D plug connector of the PCB through the plate from below:

5. Secure the PCB to the plate with the screws from step 3:



6. Stick the option PCB in the inverter so that the gold contacts slide into the black terminal block:

7. Secure the plate to the inverter with the mounting screws:

 \Rightarrow You have installed the accessory.

Δ

4 Electrical installation

4.1 Setup

To set up a CAN bus, all stations (nodes) must be connected together via the lines CAN_Low and CAN_High. This means that every device which is not at the end of the bus has an incoming and an outgoing bus cable. For the device at the end of the CAN bus to which only one bus cable is connected, a terminal resistance of 124 Ohm must be connected between CAN_Low and CAN_High instead of the second bus cable..

Fig. 4-1 Organization of a CAN bus system

All stations on the CAN bus must be set to the same transmission speed. This is done with parameter *A82 CAN baudrate*. The maximum line length depends on the baud rate being used. The following table shows the maximum permissible lengths over the entire extent of the bus.

A82 CAN baudrate	Maximum Length	
0:10 kbit/s	5000 m	
0:20 kbit/s	2500 m	
0:50 kbit/s	1000 m	
0:100 kbit/s	800 m	
0:125 kbit/s	500 m	
0:250 kbit/s	250 m	
0:500 kbit/s	100 m	
0:800 kbit/s	< 30 m!	Only with special bus
0:1000 kbit/s	< 10 m!	cable with ± 60 nF/km

4.2 Connection

STOBER

STOBER

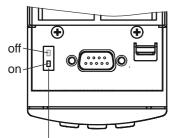
The following table contains the allocation of the sub D plug connector for connection of a CAN bus system to the inverter.

Terminal description X200

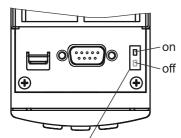
Pin		Designation	Function
	1	nc	—
	2	CAN-low	CAN-low line
\bigcirc	3	GND	Signal Ground
5 € ● ●	4	nc	—
	5	nc	—
	6	CAN-low	CAN-low line connected internally with pin 2
	7	CAN-high	CAN-high line
plug	8	nc	—
	9	CAN-high	CAN-high line connected internally with pin 7

4.2.1 Cable specifications

We recommend a shielded cable made especially for CAN bus communication (as per ISO 11898) since only a suitable fieldbus cable offers the necessary technical prerequisites such as, for example, ripple resistance and a sufficiently small cable capacity (approx. 60 nF/km) for correct operation particularly at high baud rates.


4.2.2 Shielding

Use of a suitable T plug connector (e.g., with screw-type terminals) makes it easy to connect the individual cores of the bus cable. The shield of the bus cable is mounted under the pull-relief of the plug connector. The shield is then connected correctly to the inverter via the plug housing and the sub D plug connector.


4

4.2.3 Terminating resistance

The terminating resistance installed on the option board makes implementation of the bus termination very easy. The bus termination is activated by moving the sliding switch in the "On" direction on the last device. Fig. 4-2and Fig. 4-3show the top of the inverter with an installed CAN5000 board. The sliding switch for activating the terminating resistance is also shown. Please note the differences between MDS 5000 and SDS 5000 and the FDS 5000.

Internal terminating resistance 120 Ω can be activated Fig. 4-2 MDS 5000 and SDS 5000

internal terminating resistance 120 Ω can be activated Fig. 4-3 FDS 5000

5 Fundamentals of CAN Bus

The serial bus system CAN (Controller Area Network) is a serial, multi-master communication protocol. It was originally developed for networking in the automobile. Since it is very fast, flexible and robust, its use in industrial applications is increasing. The actual CAN protocol corresponds to the "Data Link Layer" (layer 2) of the ISO/OSI reference model. Simple or manufacturer-specific CAN networks can be established at this level. The disadvantages of a layer-2 solution are the lack of standardized network management and the way the message IDs are distributed to all stations of the CAN network.

5.1 CANopen®

The user and manufacturer association "CAN in Automation (CiA[®])" have defined as open standards the higher communication layers "CAN Application Layer (CAL)" and "CANopen[®]" which is based on this. These have established themselves as the industrial standard. Services and protocols for network initialization, monitoring and configuration and for process data and parameter communication are defined here.

STÖBER ANTRIEBSTECHNIK GmbH + Co. KG offers a way to link the 5th generation of STÖBER inverters to the CAN bus via the CANopen[®] profile CiA[®]/DS-301 and all CiA[®] specifications below (*see list of literature*). The inverter is a logical CANopen[®] slave which is controlled and parameterized by a logical CANopen[®] master (controller, PLC). The manuals and commissioning instructions of all related components (CANopen[®] master/ controller, additional slaves, and so on) must be adhered to when a CAN bus system is commissioned. If more information on the CAN bus or CANopen[®] profile is needed, extensive literature can be accessed through the CiA[®] organization (www.can-cia.org) or obtained from the CiA[®].

5.2 NMT state machine

All CANopen[®] slaves offer the same routine via which the CAN interface can be initialized at power-on and controlled with commands.

This routine is shown by the Network Management state machine (see Fig. 5-1). For detailed explanations, see chapter 9.1.

Fundamentals of CAN Bus

Operation manual

STOBER

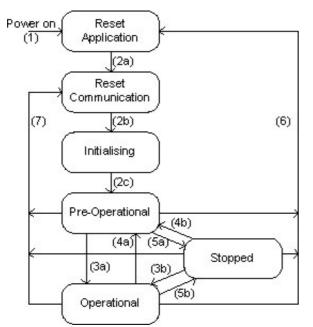


Fig. 5-1 Network management state machine

The following tables describe the states. The current state is indicated by the green LED on the option board (see chapter 6).

State	Description	green LED
Reset Application	Inverter configuration starts. Stored values are loaded.	Off
Reset Communication	Communication parameters are set to start values.	Off
Initialising	CAN bus interface is initialized.	Off
Pre-Operational	Inverter is ready for parameterization in preparation for actual operation.	Flashes
Operational	CAN bus interface is in operation with all services.	On
Stopped	Almost all communication activity has been stopped.	Single flash

5.3 Parameters in the CANopen® system of the 5th generation of STÖBER inverters

Parameters in the CANopen[®] system have two addresses. They can be specified with the CANopen[®] address or with the STÖBER address. Both use the same parameters! The parameter tables in the next few chapters include both addresses.

6

6 User interface of the CAN 5000

The state of bus communication can be queried on the option board. The CAN5000 option board is equipped with a green and a red LED. The LEDs indicate communication-specific states as per CiA[®] DR-303-3. This makes diagnosis of the CAN state on the device simple and fast.

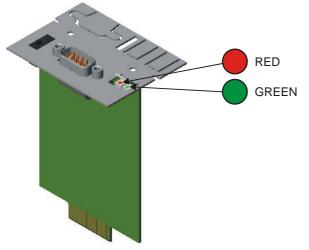


Fig. 6-1 LED arrangement

green LED

	off (option board not recognized)
200 msec	Flashing (pre-operational) single (stopped) flash
	on (operational)
red LED	
	off (ok)
	single (warning level) flash
200 mccc 1000 msec	double (node guard event) flash
	triple (sync error) flash
	on (bus off)

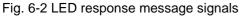


Table for the red LED:

LED State	Meaning	Measure
Off	No error, no warning	None. Everything is okay.
Single flash	At least one of the error counters (Transmit or Receive) on the CAN controller has been incremented up to the warning level.	Check bus cabling and CAN bus bit timing of all stations. The warning resets itself automatically when only stations with identically set timing are communicating.
Double flash	Node guarding event has occurred.	Please check node guarding on the CANopen [®] master.
Triple flash	Sync error	A sync message has not been received in object 1006 within the set timeout time. Set timeout time correctly or check whether the sync in sync master is being sent reliably.
On	Bus off determined by the CAN controller.	The device is no longer participating in CAN communication. Check CAN baud rate and bus cabling, and turn off and on again.

Operation manual

7 Setup of communication

The telegrams of the CAN bus consist of 0 to 8 bytes of user data which are combined into a telegram frame. The exact setup of the CAN telegram is not important for the application. This is handled by intelligent CAN controllers. (For detailed information, see the Internet site of the "CAN in Automation" association www.can-cia.de.)

7.1 Telegram Service

Information

The TIME STAMP object is not available on the 5th generation of STÖBER inverters!

Several telegram services are offered by a CANopen[®] DS301 system:

- NMT: NMT telegrams affect the state machines of the CANopen[®] slaves (s. chap. 9.1 "NMT State Machine").The commands which are sent in the NMT telegram give the slaves a chance to change their states.
- SYNC: The SYNC object is usually used to create a time pattern. Telegrams can be received or sent in relation to the SYNC object.
- TIME STAMP: The TIME STAMP object supplies a precise time stamp. This function is currently not supported by the 5th generation of STÖBER inverters.
- EMERGENCY: Emergency telegrams are triggered by an internal device error. They are sent once when the error occurs and once when the error departs. The event is specified in the telegram.
- PDO: A PDO telegram supplies process data. The parameter information to be sent is defined on the receiver and the sender. Only the data of these parameters are sent in the actual telegram. Up to four PDO channels in the sending and receiving direction can be set up for each inverter.
- SDO: Parameters are directly addressed and queried with an SDO telegram. Each inverter has four channels in the receiving and sending direction.
- ERROR CONTROL: The CAN network is monitored by ERROR CONTROL objects. These include BOOT-UP, NODE and LIFE GUARDING telegrams.

NMT, SYNC and TIME STAMP are broadcast objects which are sent simultaneously by the master to all slaves. EMERGENCY, PDO, SDO and ERROR CONTROL are peer-to-peer objects which are sent by the master to a slave or vice versa.

The following table of communication services indicates which objects are active in which NMT state.

Communication Service	Reset App, Reset Com. Initialising	Pre-Operational	Operational	Stopped
PDO	-	-	Active	-
SDO	-	Active	Active	-
SYNC	-	Active	Active	-
Emergency	-	Active	Active	Active
Boot-Up	Active	-	-	-
Network Management (NMT, Heartbeat)	_	Active	Active	Active

7.1.1 Identifier

Each telegram has a unique identifier so that the various objects and stations on the bus can be distinguished between. in CANopen[®], the identifier is called COB-ID. In addition to the differentiation between communication services and stations, the COB-ID specifies the priority of a telegram.

There are two ways to assign the COB-ID:

- "Pre-defined connection set": When a new device is purchased, the communication parameters are set in accordance with the principle of the "Pre-defined connection set." This offers simple commissioning of a "normal" CAN network with one NMT master and up to 127 NMT slaves (inverter and additional devices). When SDO channels 2, 3 and 4 are activated, up to 31 NMT slaves can be connected. This method is recommended for most applications!
- 2. "Dynamic distribution": The principle of "dynamic distribution" offers many ways to optimize a complicated CAN network with different stations and tasks.

7.2 **Pre-defined Connection Set**

A COB ID consists of 11 bits. The setup is described in the Figure 7 1. Bits 7 to 10 specify the "Function-Code" and bits 0 to 6 the "Node-ID". A function code is defined for each type of CAN message. With peer-to-peer objects, the Node-ID (*A83 bus address*) is added to the function code. The COB-ID is created from this for each individual message of each station on the CAN bus.

10	9	8	7	6	5	4	3	2	1	0
	Function-					No	de	-IC)	
co	code									
Fig	j. 7	-1	Se	tup	0 0	f th	e (CO	B-	D

Remember: COB-ID = Function-Code + Node-ID

The following tables describe the COB-IDs of the different communication objects based on the "Pre-defined connection set". The Function-Code, the resulting COB-ID, the communication parameter and the priority of the message are specified for the object.

Table of broadcast objects

Object	Function code (binary)		ulting ecimal / decimal	Index of the Assigned Communication Parameters	Priority
NMT	0000	0 _{hex}	0	-	highest
SYNC	0001	80 _{hex}	128	1005	
TIME	0010	100 _{hex}	256	_	

Table of peer-to-peer objects (here, the node ID of the affected slave is important. It must be between 1 and 31, and if the SDO channels are deactivated it must be 2, 3, 4 up to 127).

Object	Function Res		Resulting COB-ID				Priority
	(binary)	Formula	Hexadecimal	Decimal	CAN open [®]	Inverter	
Emergency	0001	80 _{hex} + Node-ID	81 _{hex} - FF _{hex}	129 - 255	1014 _{hex,} 1015 _{hex}	A207	high
PDO1 (tx)	0011	180 _{hex} + Node-ID	181 _{hex} - 1FF _{hex}	385 - 511	1800 _{hex}	A229.0	
PDO1 (rx)	0100	200 _{hex} + Node-ID	201 _{hex} - 27F _{hex}	513 - 639	1400 _{hex}	A221.0	
PDO2 (tx)	0101	280 _{hex} + Node-ID	281 _{hex} - 2FF _{hex}	641 - 767	1801 _{hex}	A230.0	
PDO2 (rx)	0110	300 _{hex} + Node-ID	301 _{hex} - 37F _{hex}	769 - 895	1401 _{hex}	A222.0	
PDO3 (tx)	0111	380 _{hex} + Node-ID	381 _{hex} - 3FF _{hex}	897 - 1023	1802 _{hex}	A231.0	
PDO3 (rx)	1000	400 _{hex} + Node-ID	401 _{hex} - 47F _{hex}	1025 - 1151	1402 _{hex}	A223.0	

STOBER

Object	Function Res		ulting COB-ID	commu	of the nication meter	Priority	
	(binary)	Formula	Hexadecimal	Decimal	CAN open [®]	Inverter	
PDO4 (tx)	1001	480 _{hex} + Node-ID	481 _{hex} - 4FF _{hex}	1153 - 1279	1803 _{hex}	A232.0	
PDO4 (rx)	1010	500 _{hex} + Node-ID	501 _{hex} - 5FF _{hex}	1281 - 1407	1403 _{hex}	A224.0	
SDO1 (tx)	1011	580 _{hex} + Node-ID	581 _{hex} - 59F _{hex}	1409 - 1439	1200 _{hex}	-	
SDO1 (rx)	1100	600 _{hex} + Node-ID	601 _{hex} - 61F _{hex}	1537 - 1567	1200 _{hex}	-	
SDO2 (tx)	1011	5A0 _{hex} + Node-ID	5A1 _{hex} - 5BF _{hex}	1441 - 1471	1201 _{hex}	A218.1	
SDO2 (rx)	1100	620 _{hex} + Node-ID	621 _{hex} - 63F _{hex}	1539 - 1599	1201 _{hex}	A218.0	
SDO3 (tx)	1011	5C0 _{hex} + Node-ID	5C1 _{hex} - 5DF _{hex}	1473 - 1503	1202 _{hex}	A219.1	
SDO3 (rx)	1100	640 _{hex} + Node-ID	641 _{hex} - 65F _{hex}	1601 - 1631	1202 _{hex}	A219.0	
SDO4 (tx)	1011	5E0 _{hex} + Node-ID	5E1 _{hex} - 5FF _{hex}	1505 - 1535	1203 _{hex}	A220.1	
SDO4 (rx)	1100	660 _{hex} + Node-ID	661 _{hex} - 67F _{hex}	1633 - 1663	1203 _{hex}	A220.0	
ERROR CONTROL	1110	700 _{hex} + Node-ID	701 _{hex} - 77F _{hex}	1793 - 1919	1016 _{hex} , 1017 _{hex}	_	low

The Pre-defined connection set is active when the value of the function code is entered in the communication parameters. The related Node-ID is then automatically added to the Function-Code.

Explanation of the abbreviations:

1-4	This abbreviation identifies the channel. Devices of the 5 th generation of STÖBER inverters can simultaneously transmit four PDOs and four SDOs separately.
(rx)	This identifier specifies the objects which the inverter receives from the NMT master.
(tx)	This identifier specifies the objects which the inverter (NMT slave) sends to the master.
SDO2, -3, -4	This abbreviation identifies the channel. Devices of the 5 th generation of STÖBER inverters can simultaneously transmit four PDOs and four SDOs separately.

7

Operation manual

7.3 Dynamic Distribution

In special cases, it may be necessary to change the above described allocation between COB-ID and the objects. The change is possible with the following objects.:

- SYNC
- EMERGENCY
- PDO1, 2, 3 and 4 in both sending directions
- SDO2, 3 and 4 in both sending directions

The dynamic distribution principle is introduced by changing the allocated communication parameters. When these parameters do not contain the standard value (Function-Code from the above table), the addition of the Node-ID to create the resulting COB-ID is not performed. The "Pre- defined Connection Set" routine is switched off for the applicable message.

7.3.1 Procedure

The NMT master overwrites the ID when the inverter (NMT slave) is in the "Preoperational" state. When parameters are changed and the functionality is then activated (PDOs are activated by NMT start and SDOs are reactivated by NMT reset communication, for example), the new COB IDs become valid. When these changes are also to remain effective after the power is turned off, the action "save values" must be triggered (via STÖBER parameter *A00.0* or via CANopen[®] object "1010 Store parameters"). During the next device startup, the inverter checks to determine whether the values in the allocated communication parameters are standard values (Function-Code in bits 7 to 10). If this is the case, the value of the Node-ID (STÖBER parameter *A83 Bus address*) is added in accordance with the "Pre-defined Connection Set" standard principle. If no standard values are determined, the dynamic distribution principle applies.

7.3.2 Example 1

You want to activate the second SDO channel and connect fewer than 64 NMT slaves to the CAN bus.

After the first startup of the inverter with the bus address 1, only SDO channel 1 is active. SDO1 (rx) has COB ID 601_{hex} and SDO1 (tx) has COB ID 581_{hex} . Using the SDO service, you change the communication parameter with index/ subindex 1201/1 2nd server SDO parameter / COB ID client -> server to the value 80000641_{hex} , and parameter $1201/2 2^{nd}$ server SDO parameter / COB ID server -> to the value $800005C1_{hex}$. With a change to the NMT states *reset-communication* or stop and then a change to the state *preoperational*, both receive and transmit directions of the SDO channel are activated. At the same time, the COB IDs are specified as 641_{hex} for rx and $5C1_{hex}$ for tx. With "save values," this SDO channel is immediately activated after the next power-on. These identifiers would be used as standard by another station with the node ID 65 (41_{hex}) for SDO channel 1. This must be prevented by ensuring that no station receives a node ID of 65 or higher.

7.3.3 Example 2

You want to give the PDO (tx) objects of the three PDO channels of station 1 a higher priority than the PDO objects of other stations. Make the following parameter settings:

- Parameter 1800/1_{hex} 1st transmit PDO parameter / COB-ID set the identifier of PDO1 (tx) to the value F0_{hex} and
- Parameter 1801/1_{hex} 1st transmit PDO parameter / COB-ID set the identifier of PDO2 (tx) to the value F1_{hex} and
- Parameter 1802/1_{hex} 1st transmit PDO parameter / COB-ID set the identifier of PDO3 (tx) to the value F2_{hex}.

To prevent the COB-IDs from colliding with EMERGENCY signals of other stations, no station may use the Node-ID 112, 113 or 114 with the Pre-defined connection set.

7.3.4 Example 3

Each received CAN message adds to the computing load of the station. When a system frequently sends the SYNC broadcast message in a CAN network and some of the stations do not need this, receipt and processing for these stations can be disabled. Set the communication parameter 1005_{hex} COB-ID SYNC to a value which is not one of the identifiers used in the network. The value $7FF_{hex}$ is recommended since it is not used with CANopen[®].

8 Data transmission with PDO and SDO

Since the exchange of user data is the main task of a CAN system, we will start by describing the communication services PDO and SDO. The objects NMT, SYNC, EMERGENCY and ERROR CONTROL are discussed in chapter 7.1. All parameters of the inverter can be read or changed by the SDP service (SDO = Service Data Object) in the parameter channel. The desired parameter (communication object) can be addressed by index and subindex within an SDO telegram.

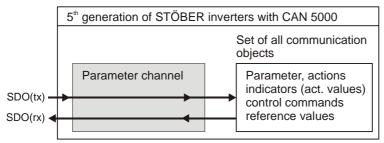


Fig. 8-1 Communication via SDO channel

A PDO telegram transmits data which are used to control and monitor the running process and which require short transmission times. The contents of the previously selected parameters are sent directly and no objects are addressed in the telegram.

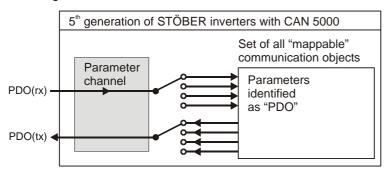


Fig. 8-2 Communication via PDO channel

STÖBER .

8.1 Process data transmission with PDO

Process data are transferred with PDO telegrams. As seen by the inverter, each PDO channel has a receiving direction (rx) and a sending direction (tx). PDO channels can be run at the same time. For example, when the axis switch POSISwitch[®] AX 5000 is used, one channel each can be used for one axis. This permits operation of four mechanical axes in succession on one inverter. Allocation of one PDO channel to one axis makes handling easy and logical.

8.1.1 Process data mapping

Process data mapping specifies which parameters (communication objects) will be transmitted via the process data channel (PDO service). Devices of the 5th generation of STÖBER inverters support flexible mapping of the communication objects on the PDO channels. This routine is called PDO mapping.

Information

The total length of the mapped parameters may not exceed 8 bytes per channel! Make sure that the total length does not contain more than 8 bytes.

One parameter with six sub-elements exists for each PDO channel for each sending direction. The addresses of the parameters whose contents are transferred via the PDO channel are entered in the sub-elements. Depending on the number and size of the entered objects, the inverter expects a corresponding number of bytes in the PDO telegram. If more bytes are received, the excess data are ignored. If too few bytes arrive, the target objects which were not completely written remain unchanged.

There are two ways to set the mapping:

- In a CANopen[®] system with an SDO telegram
- In the parameter list with the POSITool software

With both methods, the mapping parameter or one of its sub-elements is addressed. It addressed in the SDO telegram with the CANopen[®] address or, with POSITool, with the STÖBER address.

A sub-element of the mapping parameter has a length of four bytes. It is described by the SDO telegram with index, subindex and, optionally, the bit length of the parameter to be mapped. The bit length of the mapped parameter must not be specified when sent to the inverter. During read-accesses, it is supplied from the inverter.

The example below shows the selection of the 2808hex / 0 parameter (parameter *E08 n-Motor* with 16 bits of data) as it is transmitted in an SDO telegram. If the parameter is to be mapped first on the 1st PDO (rx) channel, the telegram must be addressed in the parameter with index 1600hex and subindex 1.

Data transmission with PDO and SDO

Operation manual

STOBER _

LSB		MS	SW
1 st byte	2 nd byte	3 rd byte	4 th byte
Length	Subindex	LSB	MSB
In bits		Inc	dex

Length	Subindex	Inc	dex
10 _{hex}	00 _{hex}	08 _{hex}	28 _{hex}

With the software POSITool, mapping is set in the parameter list. The parameter belonging to the particular channel must be called in the parameter list of the global area (in our screen: A225). The coordinates of the parameters which are to be mapped on the 1st PDO (rx) telegram are entered in parameter elements 0 to 5. The figure below shows the parameter A180 as the first mapped parameter.

Parameter Actions All groups 🔽 🗖 Only axis-dependent parameters									
Coordinates	Label	Value	Default	Min	Max	Unit	Data type	Status	r/w Access leve
A225	1. rec. PDO Mapping Rx	0	0	0	0		PDO-Mapping		3/3
A225.0	1. mapped Parameter	A180	A180		1.A0.0	· · · · ·	U32		1/1
A225.1	2. mapped Parameter	D230	D230		1.A0.0		U32		171
A225.2	3. mapped Parameter	C230	C230		1.A0.0		U32		171
A225.3	4. mapped Parameter				1.A0.0		U32		171
A225.4	5. mapped Parameter				1.A0.0		U32		171
A225.5	6. mapped Parameter				1.A0.0		U32		171

Fig. 8-3 Mapping in the parameter list (POSITool)

When parameters from one axis are mapped, the prefix must be specified: 2.C230 (torgue limit, parameter of the second axis)

The total length of the mapped parameters may not exceed 8 bytes!The mapping parameters of the channels and their sub-elements are specified in chapter 7.3 Dynamic Distribution.

The PDO mapping cannot be used for all parameters. The mappable parameters are identified in the parameter list by the abbreviation "PDO" for fieldbus notes.

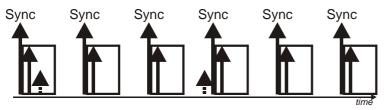
Operation manual

8

8.1.2 Transmission parameters

Transmission of PDO telegrams is defined by the additional parameters listed below.

- Inhibit time (only for PDO (tx))
- Event timer (only for PDO (tx))
- Transmission type

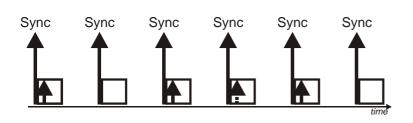

The inhibit time only applies to sending channels (as seen by the inverter). It specifies the minimum time which must pass between two telegrams on the channel. It is defined separately for each sending channel. Its unit is specified in 0.1 ms.

When a transmission type is set for a PDO (tx) channel which permits independent triggering by SYNC, the event timer can be used. When the set time in ms has expired, the telegram is triggered. The event timer only applies to asynchronous and asynchronous-cyclic transmission types (see below). One event timer exists for each PDO (tx) channel. The timer is deactivated when the entered value is zero.

The transmission type specifies the relationship of a PDO telegram to the SYNC object. There are three types:

- Asynchronous: Asynchronous PDO telegrams have no relationship to the SYNC object. A PDO (rx) is accepted immediately after receipt. A PDO (tx) is sent immediately after it is triggered. The event timer or a sending request triggers this.
- Synchronous: Synchronous PDO telegrams are processed with a time relationship to the SYNC object. The transmission type is used to set the number of SYNCs after which processing takes place. For instance, a PDO (rx) can be accepted for every fifth SYNC.
- Acyclic synchronous: Acyclic synchronous PDO telegrams have a conditional relationship to SYNC. The following applies to PDO (rx) telegrams: they are received without a relationship to SYNC but are not processed until after the next SYNC. Triggering a PDO (tx) telegram is event-controlled but it is not transmitted until the next SYNC.

The following figures illustrate this relationship.


Synchronous PDO

Asynchronous PDO

Fig. 8-4 Synchronous and asynchronous PDO

Data transmission with PDO and SDO

Operation manual

Synchronous cyclic PDO

STÖBER

STOBER

Synchronous acyclic PDO

Fig. 8-5 Synchronous cyclic PDO and synchronous acyclic PDO

The type of transmission is specified by the entry of a number in the transmission type parameter. Each channel and each sending direction has a transmission type parameter. For the numbers which must be entered, see the following table:

Transmis sion type	Cyclic	Acyclic	Synchro nous	Asynchro nous	RTR	Description
0	_	yes	yes	_	_	No cyclic transmission. Event-controlled but with relationship to SYNC. Receipt: Regular PDO-rx are not expected. If one has been received, it is accepted after arrival of the next SYNC. Sending: When the event is waiting to be sent, it waits until the next SYNC and then the event is sent.
1 - 240	yes	_	yes	_	_	Cyclic transmission of the PDOs with time relationship to SYNC. The number value specifies the number of transferred SYNCs for which receipt is expected and accepted for PDO-rx and for which a PDO-tx is sent.
241 - 251						Reserved. Not supported!
252 - 253	-	-	Х	Х	yes	Currently not supported.
254	_	_	_	yes	_	Event-controlled sending of PDO without any relationship to SYNC. The inverter accepts every PDO-rx immediately when it is received and sends PDO-tx.
255	_	_	_	yes		Reserved by device profile. Not supported!

WE KEEP THINGS MOV

Normal examples of transmission types

STOBER _

No.	Parameter setting	Description
1.	$1400_{hex} / 2$ 1. Rec PDO transmission type = $11800_{hex} / 2$ 1. Tra PDO transmission type = 1	After each received SYNC, the inverter accepts a PDO telegram with reference values and sends a PDO telegram with actual values of PDO channel 1.
2.	1400 _{hex} / 2 1. Rec PDO transmission type = 2541800 _{hex} / 2 1. Tra PDO transmission type = 254	The inverter accepts every received PDO telegram with reference values immediately and sends in reply a PDO telegram with actual values (also PDO channel 1 here).

8.1.3 Parameters of the PDO channels

This chapter covers the parameters for each PDO channel. Both sending directions are summarized in a table. The user can quickly find important parameters with the descriptions. This includes the CANopen[®] and STÖBER addresses of the parameters and the default values. The parameters are also listed in the parameter list at the end of this manual.

PDO channel 1

CANopen [®] parameter with index / subindex	STÖBER parameter	Description	Default value (hex)
1400 _{hex} / 1 1. rec.PDO para / COB-ID	A221.0	Specifies the CAN identifier (COB-ID) of the (rx) channel.	200 ^{a)}
1400 _{hex} / 2 1. rec.PDO para / trans. type	A221.1	Specifies the transmission type.	FE
1600 _{hex} / 1 1. rec.PDO Mapping Rx / 1. mapped object 1600 _{hex} / 6 1. rec.PDO Mapping Rx / 6. mapped object	A225.0 A225.5	Up to 6 parameters to which the received CAN data are written are selected here.	0 0
Not available with CANopen!®	A237	Display parameter which indicates in bytes the size of the expected receive telegram of the 1st PDO channel for the current parameterization.	
1800 _{hex} / 1 1. tra.PDO para / COB-ID	A229.0	Specifies the CAN identifier (COB-ID) of the (tx) channel.	180 ^{a)}
1800 _{hex} / 2 1. tra.PDO para / trans. type	A229.1	Specifies the transmission type.	FE
1800 _{hex} / 3 1. tra.PDO para / inhibit time	A229.2	Specifies the minimum time in 0.1 ms between 2 sending telegrams.	0

STÖBER .

Operation manual

CANopen [®] parameter with index / subindex	STÖBER parameter	Description	Default value (hex)
1800 _{hex} / 5 1. tra.PDO para / event timer	A229.3	When inverter sending is event- controlled, this time applies in ms after which a message is sent cyclically. If 0 is set here, the timer is not active.	0
$1A00_{hex} / 1$ 1. trans. PDO Mapping Tx / 1. mapped object1A00 _{hex} / 6 1. trans. PDO Mapping Tx / 6. mapped object	A233.0 A233.5	Up to 6 parameters from which the CAN data to be sent are copied are selected here.	0 0
Not available with CANopen! [®]	A241	Display parameter which indicates in bytes the size of the expected receive telegram of the 1st PDO channel for the current parameterization.	

a) The predefined connection set is then active when the value of the function code is entered in the communication parameters. The associated node ID is then automatically added to the function code.

PDO channel 2

CANopen [®] parameter with index / subindex	STÖBER Parameter	Description	Default value (hex)
1401 _{hex} / 1 2. rec.PDO para / COB-ID	A222.0	Specifies the CAN identifier (COB-ID) of the (rx) channel.	200 ^{a)}
1401 _{hex} / 2 2. rec.PDO para / trans. type	A222.1	Specifies the transmission type.	FE
1601 _{hex} / 1 2. rec.PDO Mapping Rx / 1. mapped object 1601 _{hex} / 6 2. rec.PDO Mapping Rx / 6. mapped object	A226.0 A226.5	Up to 6 parameters to which the received CAN data are written are selected here.	0 0
Not available with CANopen!®	A238	Display parameter which indicates in bytes the size of the expected receive telegram of the 2nd PDO channel for the current parameterization.	
1801 _{hex} / 1 2. tra.PDO para / COB-ID	A230.0	Specifies the CAN identifier (COB-ID) of the (tx) channel.	180 ^{a)}
1801 _{hex} / 2 2. tra.PDO para / trans. type	A230.1	Specifies the transmission type.	FE
1801 _{hex} / 3 2. tra.PDO para / inhibit time	A230.2	Specifies the minimum time in 0.1 ms between 2 sending telegrams.	0
1801 _{hex} / 5 2. tra.PDO para / event timer	A230.3	When inverter sending is event- controlled, this time applies in ms after which a message is sent cyclically. If 0 is set here, the timer is not active.	0

STÖBER _

CANopen [®] parameter with index / subindex	STÖBER Parameter	Description	Default value (hex)
1A01 _{hex} / 1 2. trans. PDO Mapping Tx / 1. mapped object	A234.0 A234.5	Up to 6 parameters from which the CAN data to be sent are copied are selected here.	0 0
Not available with CANopen!®	A242	Display parameter which indicates in bytes the size of the expected receive telegram of the 2nd PDO channel for the current parameterization.	

a) The predefined connection set is then active when the value of the function code is entered in the communication parameters. The associated node ID is then automatically added to the function code.

PDO channel 3

CANopen [®] parameter with index / subindex	STÖBER parameter	Description	Default value (hex)
1402 _{hex} / 1 3. rec.PDO para / COB-ID	A223.0	Specifies the CAN identifier (COB-ID) of the (rx) channel.	200 ^{a)}
1402 _{hex} / 2 3. rec.PDO para / trans. type	A223.1	Specifies the transmission type.	FE
1602 _{hex} / 1 3. rec.PDO Mapping Rx / 1. mapped object 1602 _{hex} / 6 3. rec.PDO Mapping Rx / 6. mapped object	A227.0 A227.5	Up to 6 parameters to which the received CAN data are written are selected here.	0 0
Not available with CANopen! [®]	A239	Display parameter which indicates in bytes the size of the expected receive telegram of the 3rd PDO channel for the current parameterization.	
1802 _{hex} / 1 3. tra.PDO para / COB-ID	A231.0	Specifies the CAN identifier (COB-ID) of the (tx) channel.	180 ^{a)}
1802 _{hex} / 2 3. tra.PDO para / trans. type	A231.1	Specifies the transmission type.	FE
1802 _{hex} / 3 3. tra.PDO para / inhibit time	A231.2	Specifies the minimum time in 0.1 ms between 2 sending telegrams.	0
1802 _{hex} / 5 3. tra.PDO para / event timer	A231.3	When inverter sending is event- controlled, this time applies in ms after which a message is sent cyclically. If 0 is set here, the timer is not active.	0
$1A02_{hex}$ / 1 3. trans. PDO Mapping Tx / 1. mapped object $1A02_{hex}$ / 6 3. trans. PDO Mapping Tx / 6. mapped object	A235.0 A235.5	Up to 6 parameters from which the CAN data to be sent are copied are selected here.	0 0

CANopen [®] parameter with index / subindex	STÖBER parameter	Description	Default value (hex)
Not available with CANopen!®	A243	Display parameter which indicates in bytes the size of the expected receive telegram of the 3rd PDO channel for the current parameterization.	

a) The predefined connection set is then active when the value of the function code is entered in the communication parameters. The associated node ID is then automatically added to the function code.

PDO channel 4

CANopen [®] parameter with index / subindex	STÖBER parameter	Description	Default value (hex)
1403 _{hex} / 1 4. rec.PDO para / COB-ID	A224.0	Specifies the CAN identifier (COB-ID) of the (rx) channel.	200 ^{a)}
1403 _{hex} / 2 4. rec.PDO para / trans. type	A224.1	Specifies the transmission type.	FE
1603 _{hex} / 1 4. rec.PDO Mapping Rx / 1. mapped object 1603 _{hex} / 6 4. rec.PDO Mapping Rx / 6. mapped object	A228.0 A228.5	Up to 6 parameters to which the received CAN data are written are selected here.	0 0
Not available with CANopen!®	A240	Display parameter which indicates in bytes the size of the expected receive telegram of the 4th PDO channel for the current parameterization.	
1803 _{hex} / 1 4. tra.PDO para / COB-ID	A232.0	Specifies the CAN identifier (COB-ID) of the (tx) channel.	180 ^{a)}
1803 _{hex} / 2 4. tra.PDO para / trans. type	A232.1	Specifies the transmission type.	FE
1803 _{hex} / 3 4. tra.PDO para / inhibit time	A232.2	Specifies the minimum time in 0.1 ms between 2 sending telegrams.	0
1803 _{hex} / 5 4. tra.PDO para / event timer	A232.3	When inverter sending is event- controlled, this time applies in ms after which a message is sent cyclically. If 0 is set here, the timer is not active.	0
$1A03_{hex} / 1$ 4. trans. PDO Mapping Tx / 1. mapped object $1A03_{hex} / 6$ 4. trans. PDO Mapping Tx / 6. mapped object	A236.0 A236.5	Up to 6 parameters from which the CAN data to be sent are copied are selected here.	0 0
Not available with CANopen!®	A244	Display parameter which indicates in bytes the size of the expected receive telegram of the 4th PDO channel for the current parameterization.	

a) The predefined connection set is then active when the value of the function code is entered in the communication parameters. The associated node ID is then automatically added to the function code.

Data transmission with PDO and SDO

STÖBER _

Examples:

Parameterization of the 1st PDO-tx so that the inverter with node ID = 1 automatically sends once every 100 ms.

Step	CAN	Contents: index / subindex,	Explanation
	object	name	
1.	Send	1800 _{hex} / 1 1.tra.PDO para / set	Enter standard value
	SDO	COB-IDCAN telegram looks like	180 _{hex} . Then the inverter
		this: $601_{hex}/23_{hex}00_{hex}18_{hex}01_{hex}$	counts the bus address
		80 _{hex} 01 _{hex} 00 _{hex} 00 _{hex}	COB-ID = 180 _{hex} .
2.	Send	1800 _{hex} / 2 A229.1 1.tra.PDO para /	Set event-oriented
	SDO	transmission typeCAN telegram	sending to value 254.
		looks like this:601 _{hex} / 23 _{hex} 00 _{hex}	The inverter then needs
		18 _{hex} 02 _{hex} FE _{hex} 00 _{hex} 00 _{hex} 00 _{hex}	no SYNC.
3.	Send	1800 _{hex} / 5 A229.3 1.tra.PDO para /	Event timer should trigger
	SDO	event timerCAN telegram look like	every 100 ms.
		this:601 _{hex} /23 _{hex} 00 _{hex} 18 _{hex} 03 _{hex}	
		64 _{hex} 00 _{hex} 00 _{hex} 00 _{hex}	
4.	Send	NMT command start nodeCAN	PDO is now initialized
	NMT	telegram looks like this:000 _{hex} 01 _{hex}	and started. The inverter
		00 _{hex}	now automatically begins
			with the sending of PDO-
			tx on the COB-ID 181 _{hex} .

8.2 Parameter transmission with SDO

The SDO service permits all parameters of the inverter to be read and written. The client (usually the CANopen[®] master) starts a job with an SDO (rx) message. It selects a communication object (parameter) index and subindex in this message. On the server (inverter) the object directory with the list of all available parameters based on this size is searched and the service is processed. The server then responds with the corresponding SDP (tx) message.

Operation manual

8

8.2.1 SDO channels

Four separate SDO channels are simultaneously available. The first SDO channel is always active. Its COB-IDs 600_{hex} + Node-ID and 580_{hex} + Node-ID cannot be changed.

The other SDO channels can be set by parameterizing to different COB-IDs or deactivated. With the devices of the 5th generation of STÖBER inverters, the default setting is "deactivated."

Since only 2 bytes for the index and only 1 byte for the subindex are available for addressing via SDO and the devices of the 5th generation of STÖBER inverters use its G5 addresses to cover the address area of 4 bytes, a suitable combination had to be introduced. Together with the POSISwitch[®], the inverter permits the operation of up to four axes. This means that exactly one SDO channel is used for each axis. Addressing of the axes is not handled via index and subindex. Instead there is an element of parameter *A11* axis to be edited for each SDO channel

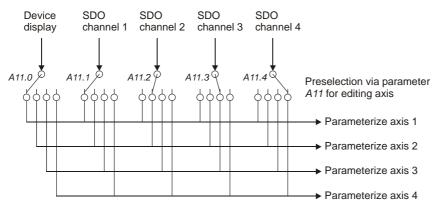


Fig. 8-6 Allocation of one SDO channel each to an axis

8.2.2 Expedited Transfer

This simplified (expedited) transmission type is used for SDO communication for all normal parameters which have a data type of up to 4 bytes. All four data bytes fit into one telegram here. The data arrangement on the bus uses the Intel format . More-significant byte/word is located at the more-significant address in memory or is sent later to the bus = Little Endian.

The entire service consists of the following telegrams:

Operation manual

Write a parameter

- The client (CANopen[®] master) sends Initiate Domain Download Request.
- The server acknowledges the request with positive response with Initiate Domain Download Response.

1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte
23 _{hex}	LSB	MSB		LSB	MSB	LSB	BSB
Command	Index		Sub- index	LSW	data	MSW	/ data
1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte
1 st Byte 63 _{hex}	2 nd Byte LSB	3 rd Byte MSB	4 th Byte	5 th Byte 0	6 th Byte 0	7 th Byte 0	8 th Byte 0

Read a parameter, an indication

- The client (controller) sends Initiate Domain Upload Request.
- The server acknowledges the request with positive response with Initiate Domain Upload Response.

1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte
40 _{hex}	LSB	MSB		_	-	_	_
Command	Inc	lex	Sub- index		rese	erved	
1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte
1 st Byte 42 _{hex}	2 nd Byte LSB	3 rd Byte MSB	4 th Byte	5 th Byte LSB	6 th Byte MSB	7 th Byte LSB	8 th Byte MSB

Negative response to an attempt to read or write

When an error occurs, the server responds with Upload or Download Request with Abort Domain Transfer.

1 st Byte	2nd Buto	2rd Buto	Ath Buto	5th Byto	6th Byto	7th Byte	oth Byto
I Dyle	Z Dyle	S Dyle	4 Dyle	5 Dyle	O Dyle	/ Dyle	O Dyle

	5		,				5	,
	80 _{hex}	LSB	MSB		LSB	MSB	LSB	MSB
С	ommand	Inc	dex	Sub- index	Additio	nalcode	Error code	Error class

Example:

- Set parameter C01 n-Max to 2500 rpm:
- Search for index and subindex from EDS file: $Index = 2401_{hex}$, subindex = 0.
- Convert number value 2500 to a hexadecimal number: 09C4_{hex}
- Enter the bytes at the correct locations of Initiate Domain Download Request Service:

Operation manual

8

1 st Byte	2 nd Byte	3 rd Byte	4 th Byte	5 th Byte	6 th Byte	7 th Byte	8 th Byte
23 _{hex}	LSB	MSB		LSB	MSB	LSB	MSB
Command	Inc	lex	Sub- Index	LSW	-Data	MSW	'-Data
	24 01	hex			00 00 0	9 C4 _{hex}	
23	01	24	00	C4	09	00	00

8.2.3 Segmented Transfer

Parameters with data types which are longer than four bytes cannot be transferred with expedited transfer. The segmented transfer is used for this. The total number of data bytes to be transferred is specified in the first initiate telegram. As many 7-data-byte telegrams as necessary follow until all bytes have been transported.

Since only a few user parameters (e.g., visible strings 1008_{hex} / 0 manufacturer device name, ...) consist of more than 4 bytes, this type of transmission is rarely needed for normal applications.

Writing of communication objects begins with the Initiate SDO Download protocol and is continued with several passes of Download SDO Segment protocol. The following figures define in detail how the telegram is set up.:

	Byte			0			123	4		7		
	Bit	76	4	32	1	0	m		d			
	>	CCS	х	n	е	s					→	
Client		= 1									-	Server
	Byte			0			123	4		7		
	Bit	75		4	0		m	re	serv	ed		
	•	SCS		Х							◄	
		= 3									-	

Initiate SDO Download Protocol

Fig. 8-7 Telegram setup "Initiate SDO Download Protocol"

Abbrev.	Explanation	Values
ccs	Client command specifier	1 = Initiate download request
SCS	Server command specifier	3 = Initiate download response
n	Only valid when e=1 and s=1, otherwise n=0	When valid, this value specifies the number of data bytes in d (bytes 1 to 7) which do not contain any user data.

STOBER _

Operation manual

8

Abbrev.	Explanation	Values	
е	Transfer type	0 = Normal transfer1 = Expedited transfer (for accelerated short transfer, see above).	
S	Size indicator	0 = Data record size is not indicated.1 = Data record size is indicated.	
m	multiplexor	Consists of index and subindex for object selection in SDO.	
d	data	E=0, s=0: d is reserved. e=0, s=1: d contains the number of bytes to be transferred. e=1, s=1: d contains the data length 4-n. e=1, s=0: d contains a number of bytes not specified here.	
x	unused	Reserved. Value must be 0.	
reserved	reserved	Reserved. Value must be 0.	

Download SDO Segment Protocol

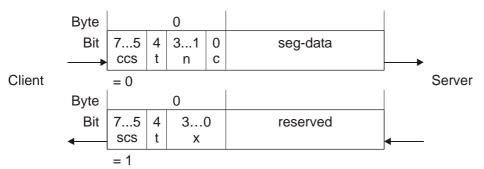


Fig. 8-8 Telegram setup "Download SDO Segment Protocol"

Abbrev.	Explanation	Values
ccs	Client command specifier	0 = Download segment request
SCS	Server command specifier	1 = Download segment response
Seg-data	Segment data	All seven available bytes are usually filled with user data here.
n	Number of bytes	Number of bytes of segment data which do no contain user data: n=0: unused data not specified.
с	continue	Specifies whether additional segments follow. 0: More segments are to come. 1: That was the last segment.

Operation manual

STÖBER .

Abbrev.	Explanation	Values
t	Toggle bit	This bit must toggle for each segment. With the first segment, this bit = 0. The value in the response is identical to the that in the request.
х	Unused	Reserved. Value must be 0.
reserved	Reserved	Reserved. Value must be 0.

Initiate SDO Upload Protocol

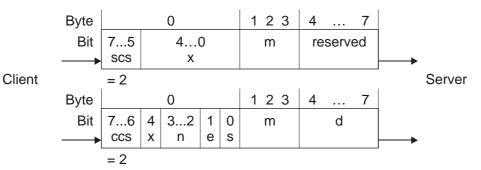
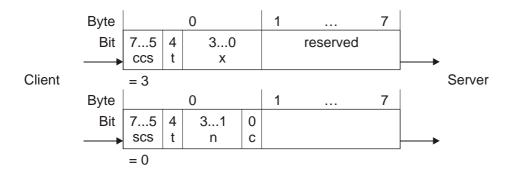


Fig. 8-9 Telegram setup "Initiate SDO Upload Protocol"


Abbrev.	Explanation	Values
ccs	Client command specifier	2 = Initiate upload request
SCS	Server command specifier	2 = Initiate upnload response
n	Nur gültig, wenn e=1 und s=1, sonst ist n=0	When valid, this value specifies the number of data bytes in d (bytes 1 to 7) which do not contain any user data.
е	Transfer type	0 = Normal transfer1 = Expedited transfer (for accelerated short transfer, see above).
s	Size indicator	0 = Data record size is not indicated.1 = Data record size is indicated.
m	multiplexor	Consists of index and subindex for object selection in SDO.
d	data	E=0, s=0: d is reserved. e=0, s=1: d contains the number of bytes to be transferred. e=1, s=1: d contains the data length 4-n.
х	unused	Reserved. Value must be 0.
reserved	reserved	Reserved. Value must be 0.

WE KEEP THINGS MOVING

Operation manual

8

Upload SDO Segment Protocol

Fig. 8-10 Telegram setup "Upload SDO Segment Protocol"

Abbrev.	Explanation	Values
CCS	Client command specifier	3 = Upload segment request
SCS	Server command specifier	0 = Upload segment response
Seg-data	Segment data	All seven available bytes are usually filled with user data here.
n	Number of bytes	Number of bytes of segment data which do no contain user data: n=0: unused data not specified.
с	continue	Specifies whether additional segments follow. 0: More segments are to come. 1: This was the last segment.
t	Toggle bit	This bit must be toggled for each segment. With the first segment, this bit = 0. The value in the response is identical to that in the request.
x	unused	Reserved. Value must be 0.
reserved	reserved	Reserved. Value must be 0.

The examples below illustrate these routinese:

Example 1: Segment Download with 16 bytes of data with the contents 01, 02, 03, ... 10_{hex}

Client: IDDReq:	21	idx	х	10 00 00 00	(ccs=1, e=0=normal, s=1 -> data=no of bytes)
Server: IDDRes:	60	idx	х	00 00 00 00	
Client: DSegReq:	00	01 0)2 ()	3 04 05 06 07	(ccs=0, t=0, n=0, c=0 -> all data bytes are used)

Data transmission with PDO and SDO

Operation manual

Server: DSegRes:	20	00 00 00 00 00 00 00	
Client: DSegReq:	10	08 09 0A 0B 0C 0D 0E	(ccs=0, t=1, n=0, c=0 -> all
			data bytes are used)
Server: DSegRes:	30	00 00 00 00 00 00 00	
Client: DSegReq:	0b	0F 10 00 00 00 00 00	(ccs=0, t=0, n=5, c=1 -> 5 data
			bytes are unused)
Server: DSegRes:	20	00 00 00 00 00 00 00	

Example 2: Segment Upload with 16 bytes of data with the contents 01, 02, 03, .. 10_{hex}

Client: IDUReq:	40	idx	x	00 0	0 00 00	(ccs=2, rest=0)
Server: IDURes:	41	idx	х	10 0	0 00 00	(scs=2, x=0, e=0, s=1 -> data
						contains no of bytes to be
						uploaded)
Client: USegReq:	60	00 0	0 00	00 0	00 00 00	(ccs=3, t=0)
Server: USegRes:	00	01 0	02 03	3 04 (05 06 07	(scs=0, t=0, n=0, c=0 -> all
						data bytes are used)
Client: USegReq:	70	00 0	0 00	00 0	00 00 00	(ccs=3, t=1)
Server: USegRes:	10	08 0	9 0/	A 0B	0C 0D 0E	(scs=0, t=1, n=0, c=0 -> all
						data bytes are used)
Client: USegReq:	60	00 0	0 00	00 0	00 00 00	(ccs=3, t=0)
Server: USegRes:	0b	0F 1	0 0	0 00	00 00 00	(scs=0, t=0, n=5, c=1 -> 5 data
						bytes are unused)

STÖBER .

8.2.4 Error codes for SDO services

With the negative reply to an SDO service regardless of whether expedited or segmented, the inverter supplies in the "Abort SDO Transfer Protocol" one of the following error descriptions in the data bytes when an error occurs:

Error Code Hexadecimal	Meaning
0503 0000	Toggle bit has not changed.
0504 0000	SDO protocol timeout has expired.
0504 0001	Invalid command received.
0504 0005	Not enough memory.
0601 0000	Access to object (parameter) not supported.
0601 0001	Attempt to read a write-only parameter.
0601 0002	Attempt to write a read-only parameter.
0602 0000	Object (parameter) is not listed in the object directory.
0604 0041	Object (parameter) cannot be mapped on PDO.
0604 0042	Number of length of the objects to be transferred exceeds the PDO length.
0604 0043	General parameter incompatibility.
0604 0047	General internal device incompatibility.
0606 0000	Access refused due to hardware error.
0607 0010	Wrong data type or length of the service parameter not right.
0607 0012	Wrong data type or length of the service parameter too large.
0607 0013	Wrong data type or length of the service parameter too small.
0609 0011	Subindex does not exist.
0609 0030	Invalid value of the parameter (only for write access).
0609 0031	Value of parameter too large.
0609 0032	Value of parameter too small.
0609 0036	Maximum value below minimum value.
0800 0000	General error
0800 0020	Data cannot be transferred or stored in the application.
0800 0021	Data cannot be transferred or stored in the application due to local controller.
0800 0022	Data cannot be transferred or stored in the application due to device state.
0800 0023	Dynamic generation of the object directory failed or no object directory available (does the inverter have a valid configuration?).

9

9 Further communication objects

This chapter discusses the communication objects NMT, SYNC, EMERGENCY and ERROR CONTROL.

9.1 NMT

The master sends NMT telegrams as broadcast services to all slaves at the same time. NMT telegrams change the device state of the slaves. The following diagram and the table show which telegrams change the states.

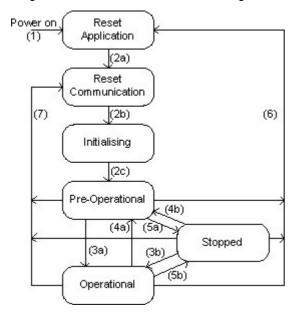


Fig. 9-1 Network management state machine

Table of state transitions

No.	Transition	Related CAN Telegram
(1)	Turn on the power supply.	-
(2a), (2b), (2c)	Automatic switching after conclusion of the internal action.	-
(3a), (3b)	Receipt of the NMT command Start_Remote_Node.	ld = 0, 2 bytes: byte 1 = 1, byte 2 = 0
(4a), (4b)	Receipt of the NMT command Enter_Pre_Operational.	Id = 0, 2 bytes: byte 1 = 128, byte 2 = 0
(5a), (5b)	Receipt of the NMT command Stop_Remote_Node.	Id = 0, 2 bytes: byte 1 = 2, byte 2 = 0
(6)	Receipt of the NMT command Reset_Node.	ld = 0, 2 bytes: byte 1 = 129, byte 2 = 0

No.	Transition	Related CAN Telegram
(7)	Receipt of the NMT command	Id = 0, 2 bytes: byte 1 = 130,
	Reset_Communication.	byte 2 = 0

The following figure shows what the NMT telegram looks like with the bytes specified in the table. The command Start_Remote_Node is shown:

COB-ID	CS	Node
0	1	0

The COB-ID identifies the NMT telegram. The particular command is entered in the Command Specifier (CS) byte. The Node byte defines which node is to be addressed. When the value is 0, all nodes are addressed. In addition, a single node can be addressed by entering the related node ID (*A83 bus address*).

9.2 SYNC

Information

Remember that when a fieldbus and the IGB-Motion bus are used at the same time, the fieldbus communication cannot be synchronized on the controller.

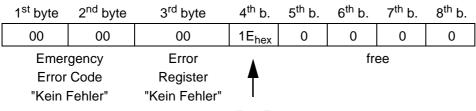
SYNC telegrams belong to the broadcast objects which are sent to all nodes simultaneously in the CANopen[®] system. Based on the "predefined connection set" principle, the SYNC identifier is set to 80_{hex}. The SYNC telegram does not contain data!

Operation manual

9

9.3 Emergency

When the service is active (bit 31 in parameter for COB-ID), the CAN bus interface of the inverter continuously monitors the device state. If the inverter changes to the "fault" state or "fault reaction active," the EMERGENCY object with one of the below error codes is sent exactly once. When the inverter leaves the "fault" state (due to acknowledgment), the EMERGENCY object with the error code "no error" is sent once. This procedure makes it possible to omit cyclic device state polling for faults by the CANopen[®] master. The master is automatically informed of every occurrence or departure of a fault and of the exact cause of the fault.


Within this telegram, the inverter provides information on the type of fault in three different ways:

The inverter changes after fault "temperature motor TMS":

1 ^s	byte	2 nd byte	3 rd byte	4 th b.	5 th b.	6 th b.	7 th b.	8 th b.
	00	10 _{hex}	01 _{hex}	29 _{hex}	0	0	0	0
	Emergency		Error	A			free	
Те	Error Code Temperature Drive		Register Temperature		Τ	(_	
	•				E43 EV	ent caus	е	

Event Temperature Motor TMS

The inverter exits the fault:

E82 Event type = no error

Tab. 9-2: Setup of Emergency telegrams

The coding of error code in the first and second bytes and error register in the third byte corresponds to the specifications in the CiA/DS-301 profile and CiA DSP402. The fourth byte contains the value of the STÖBER parameter E82 Event type. The fifth byte contains the contents of E39 Event cause.

When the parameter *A83 Bus address* is set to 0, an EMERGENCY object is never sent since the identifier 128 which is to be used might interfere with the synchronization of the process data with the SYNC object (also identifier 128).

List of possible coding in the EMERGENCY message:

Error Code	Error Register	E82 Event Code
Hex Value: Designation	Hex Value: Designation	Decimal Value: Designation
0 _{hex} : no error	0: no error	30: No event
2110 _{hex} : short circuit earth	2: current	31: Short circuit/ground fault
2230 _{hex} : intern short circuit earth	2: current	32: Short circuit/ground fault, internal
2310 _{hex} : continous overcurrent	2: current	33: Overcurrent
5000 _{hex} : device hardware	1: generic error	34: Hardware defect
6010 _{hex} : software reset	1: generic error	35: Watchdog
3110 _{hex} : mains overvoltage	4: voltage	36: Overvoltage
7303 _{hex} : resolver 1 fault	1: generic error	37: n-feedback
4210 _{hex} : temperature device	8: temperature	38: Temperature device sensor
4280 _{hex} : temperature device I2t	8: temperature	39: TempDev.i2t
6310 _{hex} : loss of parameters	1: generic error	40: Invalid data
4310 _{hex} : temperature drive	8: temperature	41: Temperature motor sensor
7110 _{hex} : brake chopper	8: temperature	42: Temperature brake resistor i2t
9000 _{hex} : external error	1: generic error	44: External fault
4380 _{hex} : temperature drive I2t	8: temperature	45: Excess temperature motor i2t
3120 _{hex} : mains undervoltage	4: voltage	46: Undervoltage
8311 _{hex} : excess torque	1: generic error	47: M-Max limit
8312 _{hex} : difficult start up	1: generic error	48: Accelerate overload
8331 _{hex} : torque fault	1: generic error	49: Brake overload
8100 _{hex} : communication	10: communication	52: Communication
5200 _{hex} : device hw control	1: generic error	55: Option board
8400 _{hex} : Velocity speed control	1: generic error	56: Overspeed
6100 _{hex} : internal software	1: generic error	57: Runtime load
2110 _{hex} : short circuit earth	2: current	58: Ground fault
4280 _{hex} : temperature device I2t	8: temperature	59: Temperature device i2t
6200 _{hex} : user software	1: generic error	60 - 67: Application evemt 0 to 7
9000 _{hex} : external error	1: generic error	68: External fault 2
7120 _{hex} : motor	1: generic error	69: Motor connection
6300 _{hex} : data record	1: generic error	70: Parameter consistency

9

9

9.4 Error control protocols

The different protocols described below are used to monitor the CAN network and for its error detection. Devices of the 5th generation of STÖBER inverter with CAN 5000 option support all three protocols.

The following calculation is used for the identifier for all types of protocols:

COB-ID = 1792 + Node-ID

This means that there is a separate identifier starting at 1793_{hex} or 700_{hex} for each NMT slave.

9.4.1 BOOT-UP

As per CANopen[®] paper DS 301 V 4.01, the inverter sends boot-up telegram during each startup of the NMT state machine during the transition from initialization to pre-operation. This feature is always active. It is a short message on the CAN bus with one byte of data. The content of this byte is zero. This permits the NMT master to determine which stations are present after power-on.

Operation manual

9.4.2 Node-Guarding

Node guarding offers a protocol which permits master and slave to check each other for correct function. At regular intervals (node guard time in milliseconds) the master sends the query (request) as remote transmit telegram to each NMT slave to be monitored. Each slave recognizes the query (indication) and sends 1 byte of data as the response. Bit no. 7 of this byte has a toggle function. It must change its state each time. Bit nos. 0 to 6 contain the state of the NMT state machine. The master receives the telegram (configuration) and can then check the slave. The time of the regular telegrams is specified with the CANopen[®] parameter $100C_{hex} / 0$ Guard Time. The CANopen[®] parameter $100D_{hex} / 0$ Life Time Factor specifies a type of tolerance factor. If, during the time resulting from the multiplication of Guard Time and Life Time Factor, the slave fails to respond or its response is faulty this triggers the event "Node Guarding Event" on the NMT master.

In reverse, the NMT slave (inverter) monitors the regular queries of the master. If they are not received for this time period, the slave triggers the event "Life Guarding Event." For the inverter this means that the event "52:Communication" with the cause "1:Error Control" has occurred. The NMT state machine of the inverter changes to the "pre-operational" state. If one of the two parameters is zero, the service is inactive. The default values for the parameters are 0.

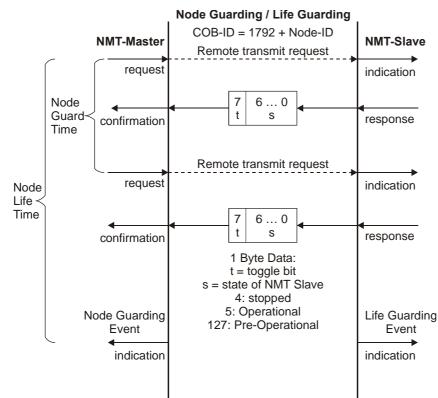


Fig. 9-3 Procedure Node Guarding

Operation manual

9

9.4.3 Heartbeat

The heartbeat protocol is another way to check the CAN network. Only Node Guard or only Heartbeat is used. The advantage of this protocol is that no request telegrams (remote frames) must be sent. This reduces the bus load of the CAN network. The heartbeat producer (usually the NMT slave) automatically regularly sends its telegrams at the time intervals entered in the CANopen[®] parameter 1017_{hex} Heartbeat Producer Time. It begins with this directly after the startup of the NMT state machine. If the value of this parameter is zero (as in the default setting), the service is inactive. When this is set in its CANopen[®] parameter Heartbeat Consumer Time, the Heartbeat Consumer expects regular telegrams from the Producer. When the telegrams are not received within the set time, it triggers the event "Heartbeat Event." The NMT master is usually set as the Heartbeat Consumer.

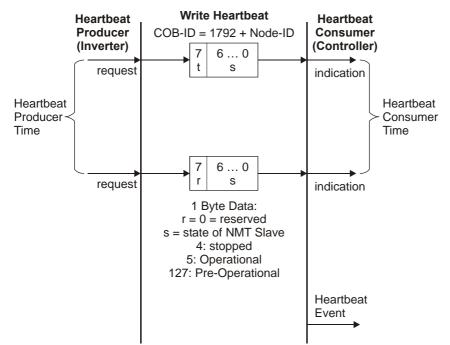


Fig. 9-4 Setup Heartbeat protocoll

10 Simple commissioning

The devices of the 5th generation of STÖBER inverters with the CAN 5000 option offer numerous features for a wide variety of individual applications on the CAN bus. This chapter provides a simple introduction to this subject with step-by-step instructions for commissioning the basic functions for a popular application.

In our example, a drive is to perform quick, single-axis positioning. Process data are specified via the CAN bus with target position, positioning speed, acceleration information and a command (e.g., "absolute positioning"). Appropriate setting of the many CAN parameters makes it possible to eliminate extensive parameter assignment tasks.

Step	Task	Explanation
1.	Mounting of CAN 5000 on the inverter.	See chapter 3.
2.	Start new project with PC software POSITool.	This Windows software offers both easy-to-use, prompted commissioning and comprehensive access to all parameters and configurations.
3.	Select type of inverter, number of axes, application and CAN 5000 option.	Processing of the configuration wizard in POSITool. In our example, the selection of the command positioning application and the CAN 5000 operation are important.
4.	Check the parameters for positioning.	POSITool indicates a list of all important parameters. For adjustment of the drive to the physical conditions, the parameters <i>I07 path/motor revolution counter</i> , <i>I08 path/motor revolution denominator</i> , and <i>I10 max. speed</i> must be checked.
5.	Check the 2 important parameters for CAN bus.	All CAN stations must be set to the same baud rate. At the plant, the parameter <i>A82 CAN-Baudrate</i> is set to 250 kbit/s.All CAN stations have different addresses. At the plant, the parameter <i>A83 Bus address</i> is set to 1. This permits a simple test with an inverter on a controller.
6.	Download to device.	When the "Online" icon is clicked, POSITool searches on the set COM for the inverter connected via serial cable and queries whether this configuration should be downloaded to the device. After you answer with YES the download is performed and the online connection is established. After this we recommend executing the action <i>A00 Save values</i> .
7.	Turn off inverter and connect CAN bus to controller with cable.	See chapter 4. Start the controller with the same baud rate as set in <i>A82</i> . Connect the voltage supply, motor and enable as described in the projecting manuals!

Step-by-step commissioning

10

Step	Task	Explanation
8.	Turn on the inverter.	After device startup, the inverter automatically sends the boot-up telegrams on the CAN bus: identifier = 701_{hex} . data = 1 byte with 00_{hex} . The green LED on the CAN board of the inverter now starts flashing. If the red LED flashes or is on, the controller is not active or the bus cabling is wrong.
9.	Send NMT-Start.	The controller must now send the NMT-Start telegram so that the inverter turns on its basic function of process data transmission (PDO). Sending telegram: identifier = 00_{hex} , data: 2 bytes: byte $0 = 01_{hex}$, byte $2 = 00_{hex}$. Instead of flashing, the green LED on the CAN board of the inverter is continuously on. This means that process data can be sent.
10.	Send the first Posi command.	By selecting the appropriate application with the sample circuiting in POSITool, the CAN bus process data are links with the reference values and actual values of command positioning. They can be used as shown below. Reference values are received by the inverter via the PDO1-rx telegram on identifier 201 _{hex} : Byte 0 = Corresponds to the parameterization of the process data on the inverter. Byte 1 = see byte 0 Byte 2 = see byte 0 Byte 3 = see byte 0 Byte 4 = see byte 0 Byte 5 = see byte 0 Byte 6 = see byte 0 Byte 7 = see byte 0
11.	Evaluate the response telegrams.	With the default setting of the CAN parameters, the inverter responds immediately to the execution of the command with its actual values via the PDO1-tx telegram on identifier 181 _{hex} : Byte 0 Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6 Byte 7

11 Parameter list

All parameters of the inverter are available as communication objects via the SDO service. Some of the parameters are described in the list in this document on the next few pages and also later in the form of an EDS file (EDS = Electronic Data Sheet).

11.1 List of the CANopen® objects

The following list of communication objects which are located in the index area between 1000_{hex} and $1FFF_{hex}$ have been implemented in accordance with DiA/DS-301. These objects permit every CANopen[®] master to read the primary features of the device on the CAN bus without having to be familiar with this documentation. Some of these objects are not in the menu of the inverter and thus have no coordinates (e.g., 1000_{hex} device type). For other communication objects there are additional manufacturer-specific parameters or indications (e.g., *E51*). These are entered in the "Coordinates" column.

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
1000 _{hex}	0	_	Device Type	00020192 _{hex}	—	r	U32
1001 _{hex}	0	E82	Error Register	0, 1, 2, 4, 8	—	r	U8
1002 _{hex}	0	E48	Manufacturer Status Register	0 – 7	Device states	r	U32
1005 _{hex}	0	A200	COB-ID SYNC Message	1000 – 2047	—	rw	U32
1006 _{hex}	0	A201	Communication Cycle Period	0 – 32000000	—	rw	U32
1008 _{hex}	0	E50	Manufac. Device Name	e.g. "MDS 5xxx"	16 signs	r	Vis String
1009 _{hex}	0	E149	Manufac. Hardware Version	e.g. "MDS 5/123/ 3802"	16 signs	r	Vis String
100A _{hex}	0	E51	Manufac. Software Version	e.g. "V 5.0 alpha 1 "	16 signs	r	Vis String
100B _{hex}	0	A83	Node-Id	0 125	—	r	U32
100C _{hex}	0	A203	Guard Time	100C * 100D =	—	rw	U16
100D _{hex}	0	A204	Life Time Factor	guard time in ms	—	rw	U8
1010 _{hex}	0	_	Store parameters largest subindex supported	Value =1 for only 1 additional subobject	_	r	U32
1010 _{hex}	1	A00.0	store parameters.save all parameters	ASCII "save" triggers storing	Spec. SDO mechanism	rw	U32

Operation manual

STOBER _

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
1014 _{hex}	0	A207	COB-ID Emergency Object	Default: 80 _{hex} + Node-Id	_	rw	U32
1015 _{hex}	0	A208	Inhibit Time EMCY	Time in 100 µs	—	rw	U32
1017 _{hex}	0	A210	Producer Heartbeat Time	Time in 1 ms	—	rw	U16
1018 _{hex}	0	—	Identity Object: number of entries	4	—	r	r
1018 _{hex}	1		Identity Object: Vendor ID	B9 _{hex} = no. for STÖBER Antriebstechnik GmbH		r	r
1018 _{hex}	2	—	Identity Object: Product code	Rated power in 0,1 kW		r	r
1018 _{hex}	3	_	Identity Object: Revision number	SW build number	—	r	r
1018 _{hex}	4	E52	Identity Object: Serial number	8000000	—	r	r
1020 _{hex}	0	—	Verify Configuration.No of sup. entries	2	—	r	r
1020 _{hex}	1	A211	Verify Configuration. Configuration date	U32	Days starts from 1.1.84	rw	U32
1020 _{hex}	2	A212	Verify Configuration. Configuration time	U32	ms after 0:00 oʻclock	rw	U32
1200 _{hex}	0	_	1.Server SDO Parameter: no of elem	Constant 2	_	r	U32
1200 _{hex}	1	_	1.Server SDO Parameter: COB-ID rx	600 _{hex} + Node-Id	Read only	r	U32
1200 _{hex}	2	_	1.Server SDO Parameter: COB-ID tx	580 _{hex} + Node-Id	Read only	r	U32
1201 _{hex}	0	_	2.Server SDO Parameter: no of elem	Constant 3	_	r	U8
1201 _{hex}	1	A218.0	2.Server SDO Parameter: COB-ID rx	620 _{hex} + Node-Id	_	rw	U32
1201 _{hex}	2	A218.1	2.Server SDO Parameter: COB-ID tx	5A0 _{hex} + Node-Id	—	rw	U32
1201 _{hex}	3	A218.2	2.Server SDO Para.: Client. Node-Id	0	—	rw	U32
1202 _{hex}	0	_	3.Server SDO Parameter: no of elem	Constant 3	_	r	U8

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
1202 _{hex}	1	A219.0	3.Server SDO Parameter: COB-ID rx	640 _{hex} + Node-Id	—	rw	U32
1202 _{hex}	2	A219.1	3.Server SDO Parameter: COB-ID tx	5C0 _{hex} + Node-Id		rw	U32
1202 _{hex}	3	A219.2	3.Server SDO Para.: Client. Node-Id	0		rw	U32
1203 _{hex}	0	—	4.Server SDO Parameter: no of elem	Constant 3	_	r	U8
1203 _{hex}	1	A220.0	4.Server SDO Parameter: COB-ID rx	660 _{hex} + Node-Id		rw	U32
1203 _{hex}	2	A220.1	4.Server SDO Parameter: COB-ID tx	5E0 _{hex} + Node-Id		rw	U32
1203 _{hex}	3	A220.2	4.Server SDO Para.: Client. Node-Id	0	_	rw	U32
1400 _{hex}	0	_	1. rec. PDO para/largest subindex	2		r	U8
1400 _{hex}	1	A221.0	1. rec. PDO para/COB-ID	200 _{hex} + Node-ID	_	rw	U32
1400 _{hex}	2	A221.1	1. rec. PDO para/trans. Type	1 240, 254	—	rw	U8
1401 _{hex}	0		2. rec. PDO para/largest subindex	2		r	U8
1401 _{hex}	1	A222.0	2. rec. PDO para/COB-ID	300 _{hex} + Node-ID	_	rw	U32
1401 _{hex}	2	A222.1	2. rec. PDO para/trans. Type	1 240, 254		rw	U8
1402 _{hex}	0	—	3. rec. PDO para/largest subindex	2		r	U8
1402 _{hex}	1	A223.0	3. rec. PDO para/COB-ID	400 _{hex} + Node-ID	—	rw	U32
1402 _{hex}	2	A223.1	3. rec. PDO para/trans. type	1 240, 254	—	rw	U8
1403 _{hex}	0	—	4. rec. PDO para/largest subindex	2		r	U8
1403 _{hex}	1	A224.0	4. rec. PDO para/COB-ID	500 _{hex} + Node-ID	—	rw	U32
1403 _{hex}	2	A224.1	4. rec. PDO para/trans. type	1 240, 254	_	rw	U8
1600 _{hex}	0	—	1. rec. PDO Mapping Rx/no. of mapped		—	r	U8
1600 _{hex}	1	A225.0	1. rec. PDO Mapping Rx/1. Object	0 (inactive)	_	rw	U32
1600 _{hex}					_	rw	U32

Operation manual

11

STOBER _

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
1600 _{hex}	6	A225.5	1. rec. PDO Mapping Rx/6. Object	0 (inactive)	_	rw	U32
1601 _{hex}	0	_	2. rec. PDO Mapping Rx/no. of mapped	_	—	r	U8
1601 _{hex}	1	A226.0	2. rec. PDO Mapping Rx/1. Object		—	rw	U32
1601 _{hex}					—	rw	U32
1601 _{hex}	6	A226.5	2. rec. PDO Mapping Rx/6. Object	—	_	rw	U32
1602 _{hex}	0	_	3. rec. PDO Mapping Rx/no. of mapped	_	—	r	U8
1602 _{hex}	1	A227.0	3. rec. PDO Mapping Rx/1. Object	_	—	rw	U32
1602 _{hex}					_		
1602 _{hex}	6	A227.5	3. rec. PDO Mapping Rx/6. Object	_	—	rw	U32
1603 _{hex}	1	A228.0	4. rec. PDO Mapping Rx/1. Object	_	—	rw	U32
1603 _{hex}					_		
1603 _{hex}	6	A228.5	4. rec. PDO Mapping Rx/6. Object	_	—	rw	U32
1800 _{hex}	0	—	1. tra. PDO para/largest subindex	5	—	r	U8
1800 _{hex}	1	A229.0	1. tra. PDO para/COB-ID	180 _{hex} + Node-ID	_	rw	U32
1800 _{hex}	2	A229.1	1. tra. PDO para/trans. Type	1 240, 254	_	rw	U8
1800 _{hex}	3	A229.2	1. tra. PDO para/inhibit time	Time in n * 100 µs	_	rw	U16
1800 _{hex}	5	A229.3	1. tra. PDO para/event timer	Time in ms	_	rw	U16
1801 _{hex}	0	_	2. tra. PDO para/largest subindex	5	_	r	U8
1801 _{hex}	1	A230.0	2. tra. PDO para/COB-ID	280 _{hex} + Node-ID	—	rw	U32
1801 _{hex}	2	A230.1	2. tra. PDO para/trans. Type		—	rw	U8
1801 _{hex}	3	A230.2	2. tra. PDO para/inhibit time	Time in n * 100 µs		rw	U16
1801 _{hex}	5	A230.3	2. tra. PDO para/event timer	Time in ms	_	rw	U16
1802 _{hex}	0		3. tra. PDO para/largest subindex	5	—	r	U8
1802 _{hex}	1	A231.0	3. tra. PDO para/COB-ID	380 _{hex} + Node-ID	_	rw	U32
1802 _{hex}	2	A231.1	3. tra. PDO para/trans. Type	1 240, 254	_	rw	U8

STÖBER _

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
1802 _{hex}	3	A231.2	3. tra. PDO para/inhibit time	Time in n * 100 µs		rw	U16
1802 _{hex}	5	A231.3	3. tra. PDO para/event timer	Time in ms		rw	U16
1803 _{hex}	0	—	4. tra. PDO para/largest subindex	5	—	r	U8
1803 _{hex}	1	A232.0	4. tra. PDO para/COB-ID	480 _{hex} + Node-ID	—	rw	U32
1803 _{hex}	2	A232.1	4. tra. PDO para/trans. Type	1 240, 254	_	rw	U8
1803 _{hex}	3	A232.2	4. tra. PDO para/inhibit time	Time in n * 100 µs	—	rw	U16
1803 _{hex}	5	A232.3	4. tra. PDO para/event timer	Time in ms	—	rw	U16
1A00 _{hex}	0	—	1. trans. PDO Mapping Tx/ no. of mapped	6	_	r	U8
1A00 _{hex}	1	A233.0	1. trans. PDO Mapping Tx/ 1. Object	0 (inactive)	_	rw	U32
1A00 _{hex}					_	rw	U32
1A00 _{hex}	6	A233.5	1. trans. PDO Mapping Tx/ 6. Object	0 (inacive)	_	rw	U32
1A01 _{hex}	0		2. trans. PDO Mapping/no. of mapped	_	—	r	U8
1A01 _{hex}	1	A234.0	2. trans. PDO Mapping Tx/ 1. Object	_	—	rw	U32
1A01 _{hex}					—	rw	U32
1A01 _{hex}	6	A234.5	2. trans. PDO Mapping Tx/ 6. Object	_	—	rw	U32
1A02 _{hex}	0	—	3. trans. PDO Mapping Tx/ no. of mapped	6	—	r	U8
1A02 _{hex}	1	A235.0	3. trans. PDO Mapping Tx/ 1. Object	_	—	rw	U32
1A02 _{hex}					_	rw	U32
1A02 _{hex}	6	A235.5	3. trans. PDO Mapping Tx/ 6. Object		—	rw	U32
1A03 _{hex}	0		4. trans. PDO Mapping Tx/ no. of mapped	6	_	r	U8
1A03 _{hex}	1	A236.0	4. trans. PDO Mapping Tx/ 1. Object	_	—	rw	U32
1A03 _{hex}					—	rw	U32
1A03 _{hex}	6	A236.5	4. trans. PDO Mapping Tx/ 6. Object		_	rw	U32
_	_	A237	1. rec. PDO Mapped Len	0 8	_	r	U8

Operation manual

11

STÖBER .

Index	Sub- index	G5-Adr	Name	Wertebereich	Skalierung / Einheit	r/w	Datent yp
_	—	A238	2. rec. PDO Mapped Len	0 8	—	r	U8
_	—	A239	3. rec. PDO Mapped Len	0 8	—	r	U8
_	_	A240	4. rec. PDO Mapped Le	0 8	—	r	U8
_	_	A241	1. trans. PDO Mapped Len	0 8	—	r	U8
_	_	A242	2. trans. PDO Mapped Len	0 8	—	r	U8
—	_	A243	3. trans. PDO Mapped Len	0 8	—	r	U8
_	_	A244	4. trans. PDO Mapped Len	0 8	—	r	U8

1001 Error Register: Only one byte (the LSB) contains information: The following values are possible:

Hex Value	Dec. Value	Meaning / Inverter Fault
00 _{hex}	0	Inverter is not faulty
01 _{hex}	1	General fault
02 _{hex}	2	Fault in connection with current: Overcurrent, short circuit/ground fault, etc.
04 _{hex}	4	Fault in connection with voltage: Overvoltage, undervoltage, etc.
08 _{hex}	8	Fault in connection with temperature: I ² t, motor temperature, etc.
10 _{hex}	16	Fault in communication
20 _{hex}	32	Reserved
40 _{hex}	64	Reserved
80 _{hex}	128	Reserved

11.2 List of the drive parameters

All STÖBER-specific drive parameters are listed as communication objects in the area specified by CANopen[®] (manufacturer-specific area) from index 2000_{hex} to $5FF_{hex}$. The line number after the group are added to the start index. The subindex of a drive parameter (e.g., 0 for start, 1 for progress and 2 for result of actions) is entered in the subindex of the SDO servic.

Area no.	Group	Start Index	End Index
1	А	2000 _{hex}	21FF _{hex}
2	В	2200 _{hex}	23FF _{hex}
3	С	2400 _{hex}	25FF _{hex}
4	D	2600 _{hex}	27FF _{hex}
5	E	2800 _{hex}	29FF _{hex}
6	F	2A00 _{hex}	2BFF _{hex}
7	G	2C00 _{hex}	2DFF _{hex}
8	Н	2E00 _{hex}	2FFF _{hex}
9	I	3000 _{hex}	31FF _{hex}
10	J	3200 _{hex}	33FF _{hex}
11	К	3400 _{hex}	35FF _{hex}
12	L	3600 _{hex}	37FF _{hex}
13	М	3800 _{hex}	39FF _{hex}
14	Ν	3A00 _{hex}	3BFF _{hex}
15	0	3C00 _{hex}	3DFF _{hex}
16	Р	3E00 _{hex}	3FFF _{hex}
17	Q	4000 _{hex}	41FF _{hex}
18	R	4200 _{hex}	43FF _{hex}
19	S	4400 _{hex}	45FF _{hex}
20	Т	4600 _{hex}	47FF _{hex}
21	U	4800 _{hex}	49FF _{hex}
22	V	4A00 _{hex}	4BFF _{hex}
23	W	4C00 _{hex}	4DFF _{hex}
24	Х	4E00 _{hex}	4FFF _{hex}
25	Υ	5000 _{hex}	51FF _{hex}
26	Z	5200 _{hex}	53FF _{hex}
Reserved	-	5400 _{hex}	5FFF _{hex}

List of literature

12 List of literature

1. Projecting manuals:

STOBER STOBER

- POSIDRIVE[®] MDS 5000: ID 442273
- POSIDRIVE[®] FDS 5000: ID 442269
- POSIDYN[®] SDS 5000: ID 442277
- 2. Commissioning instructions:
 - POSIDRIVE[®] MDS 5000: ID 442297
 - POSIDRIVE[®] FDS 5000: ID 442293
 - POSIDYN[®] SDS 5000: ID 442301
- 3. Operating manuals:
 - POSIDRIVE[®] MDS 5000: ID 442285
 - POSIDRIVE[®] FDS 5000: ID 442281
 - POSIDYN[®] SDS 5000: ID 442289
- 4. Modules for the 5th generation of STÖBER inverters (ID 441682)
- Programming manual for the 5th generation of STÖBER inverters (ID 441693)
- 6. Installation and commissioning instructions for $\mathsf{POSIDRIVE}^{\textcircled{B}}$ FAS 4000 (ID 441581)
- Installation and commissioning instructions for POSIDRIVE[®] FDS 4000 (ID 441408)
- Installation and commissioning instructions for POSIDYN[®] SDS 4000 (ID 441449)
- 9. ISO 11898, 1993 Road Vehicles, Interchange of Digital Information -Controller Area Network (CAN) for high-speed communication
- 10. Robert Bosch GmbH, CAN Specification 2.0 Part A+B, September 1991
- 11. CiA/DS-102, CAN Physical Layer for Industrial Applications, April 1994
- 12. CiA/DS-201, CAN in the OSI Reference Model, February 1996
- 13. CiA/DS-202/1, CMS Service Specification, February 1996
- 14. CiA/DS-202/2, CMS Protocol Specification, February 1996
- 15. CiA/DS-202/3, CMS Data Types and Encoding Rules, February 1996
- 16. CiA/DS-203/1, NMT Service Specification, February 1996
- 17. CiA/DS-203/2, NMT Protocol Specification, February 1996
- 18. CiA/DS-204/1, DBT Service Specification, February 1996
- 19. CiA/DS-204/2, DBT Protocol Specification, February 1996
- 20. CiA/DS-205/1, LMT Service Specification, February 1996
- 21. CiA/DS-205/2, LMT Protocol Specification, February 1996
- 22. CiA/DS-207, Application Layer Naming Specification, February 1996
- 23. CiA/DS-301, CANopen: Application Layer and Communication Profile V 4.01, June 2000
- 24. CiA/DSP-306, CANopen: Electronic Data Sheet Specification V1.0, 31.05.2000
- 25. CiA/DSP-402, CANopen: Drives and Motion Control V 2.0, August 2002
- 26. DRIVECOM profile drive systems no. 21, November 1991

ID 441686.06

Notizen

STÖBER	
	0
	>
	<u> </u>
	7
	<u>م</u>
	S

Address registers

Always up to date on the internet: $\underline{\textit{www.stober.com}} \rightarrow \textit{contact}$

- Technical Offices (TB) for advice and marketing in Germany
- Global presence for advice and marketing in about 25 countries
- Service Network Germany
- Service Network International
- STÖBER Subsidiaries:

Austria	USA	France	
STÖBER ANTRIEBSTECHNIK GmbH Hauptstraße 41a 4663 Laakirchen Fon +43 7613 7600-0 Fax +43 7613 7600-2525 E-Mail: office@stoeber.at www.stoeber.at	STOBER DRIVES INC. 1781 Downing Drive Maysville, KY 41056 Fon +1 606 7595090 Fax +1 606 7595045 eMail: sales@stober.com www.stober.com	STÖBER S.a.r.I. 131, Chemin du Bac à Traille Les Portes du Rhône 69300 Caluire et Cuire Fon +33 4 78989180 Fax +33 4 78985901 eMail: mail@stober.fr www.stober.fr	
Switzerland	Great Britain	Italy	
STÖBER SCHWEIZ AG Rugghölzli 2 5453 Remetschwil Fon +41 56 496 96 50 Fax +41 56 496 96 55 eMail: info@stoeber.ch www.stoeber.ch	STOBER DRIVES LTD. Upper Keys Business Village Keys Park Road, Hednesford Cannock WS12 2HA Fon +44 1543 458 858 Fax +44 1543 448 688 E-Mail: mail@stober.co.uk www.stober.co.uk	STÖBER TRASMISSIONI S. r. l. Via Italo Calvino, 7 Palazzina D 20017 Rho (MI) Fon +39 02 93909-570 Fax +39 02 93909-325 eMail: info@stoeber.it www.stoeber.it	
China	Japan	Singapore	
STOBER CHINA German Centre Beijing Unit 2010, Landmark Tower 2, 8 North Dongsanhuan Road Chaoyang District 100004 Beijing Fon +86 10 65907391 Fax +86 10 65907393 eMail: info@stoeber.cn www.stoeber.cn	STOBER Japan P.O. Box 113-002, 6 chome 15-8, Hon-komagome Bunkyo-ku Tokyo Fon +81 3 5395-6788 Fax +81 3 5395-6799 eMail: mail@stober.co.jp www.stober.co.jp	STOBER Singapore Pte. Ltd. 50 Tagore Lane #05-06B Entrepreneur Centre Singapore 787494 Fon +65 65112912 Fax +65 65112969 E-Mail: info@stober.sg www.stober.sg	

STÖBER ANTRIEBSTECHNIK GmbH + Co. KG

Kieselbronner Str. 12 75177 PFORZHEIM GERMANY Tel. +49 7231 582-0 Fax. +49 7231 582-1000 E-Mail: mail@stoeber.de

24/h service hotline +49 180 5 786 323

www.stober.com

Technische Änderungen vorbehalten Errors and changes excepted ID 441686.06 09/2013

