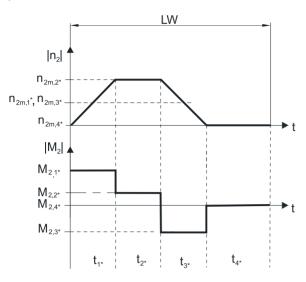

1 Drive selection for gravity-loaded axes with ServoStop

The formula symbols for values actually present in the application are marked with *.

The values for i, n_{1maxDB} , n_{1maxZB} and M_{1Bstat} can be found in selection tables in the respective chapter of catalog ServoStop servo gear units with brake ID 443234_de.


The values for the available maximum motor brake torque M_{M,Bmax*} can be found in the manufacturer catalog.

For STOBER permanent magnet brakes, a tolerance of +100 %, -20 % applies to static and dynamic braking torques, for STOBER spring-loaded brakes +40 %, -20 %.

The values for fB_{op} , fB_{t} , fB_{T} , fB_{safe} , fB_{ver} and fB_{eff} can be found in the corresponding tables in this chapter.

Example of cyclic operation

The following calculations are based on a representation of the power taken from the output based in accordance with the following example:

Calculation of the actual maximum acceleration torque

$$M_{2acc^{\star}} = J_{tot} \cdot \frac{\Delta n_2}{9.55 \cdot \Delta t} + M_{L^{\star}}$$

Calculation of the actual average input speed

$$\begin{split} n_{1m^{\star}} &= n_{2m^{\star}} \cdot i \\ n_{2m^{\star}} &= \frac{\left| n_{2m,1^{\star}} \right| \cdot t_{1^{\star}} + \ldots + \left| n_{2m,n^{\star}} \right| \cdot t_{n^{\star}}}{t_{1^{\star}} + \ldots + t_{n^{\star}}} \end{split}$$

If $t_{1^*} + ... + t_{3^*} \ge 6$ min, calculate n_{2m^*} without the rest phase t_{4^*} .

The values for the ratio i can be found in the selection tables.

Calculation of the actual emergency-off torque

$$M_{2NOT^{\star}} = J_{tot} \cdot \frac{\Delta n_2}{9.55 \cdot \Delta t} + M_{L^{\star}}$$

Calculation of the actual equivalent torque

$$M_{2eq^{*}} = \sqrt[3]{\frac{\left|n_{2m,1^{*}}\right| \cdot t_{1^{*}} \cdot \left|M_{2,1^{*}}\right| + \ldots + \left|n_{2m,n^{*}}\right| \cdot t_{n^{*}} \cdot \left|M_{2,n^{*}}\right|}{\left|n_{2m,1^{*}}\right| \cdot t_{1^{*}} + \ldots + \left|n_{2m,n^{*}}\right| \cdot t_{n^{*}}}$$

Operating factors

Operating mode P, PH, PHQ

Operating mode	fB _{op}
Uniform continuous operation	1.00
Cyclic operation	1.00
Reversing load cyclic operation	1.00

Operating mode C, F, K, S, PK, PHK, PHQK

Operating mode	fB _{op}
Uniform continuous operation	1.00
Cyclic operation	1.25
Reversing load cyclic operation	1.40

Run time fB,								
					1.00			
Daily runtime ≤ 8 h Daily runtime ≤ 16 h					1.00			
Daily runtime ≤ 10 h							1.10	
Temperature						fВ _т		
Motor cooling			Surrou	nding temperate	ure			
Motor with forced ven	itilation			≤ 20 °C			0.9	
				≤ 30 °C			1.0	
				≤ 40 °C			1.15	
Motor with convection	n cooling			≤ 20 °C		1.0		
				≤ 30 °C			1.1	
				≤ 40 °C			1.25	
Safe stop							fB _{safe}	
Safety-relevant + redundant brake system						≥ 1.00		
Safety-relevant + 1 brake							≥ 1.30	
Gravity-loaded axes							fB _{ver}	
Personal hazard \rightarrow no	ersonal hazard \rightarrow no \geq 1.00					≥ 1.00		
Personal hazard \rightarrow yes ≥ 2.00					≥ 2.00			
Safety emergency off	Safety emergency off fB _{NOTsafe}						fB _{NOTsafe}	
Planetary gear units 0.6								
Mass inertia ratio	Mass inertia ratio fB _{eff}							
Load level	λ 0.5	λ1		λ2	2	\ 5	λ 10	
90	0.92	0.95		0.96	0	.98	0.99	
75	0.83	0.87		0.91	0	.95	0.97	
50	0.66	0.75		0.83	0	.91	0.95	
0	0.33	0.50		0.66	0	.83	0.90	

$$Load \ level = 100 \cdot (1 - \frac{(M_{1Bstat} + M_{M,Bmax^*}) - \frac{M_{L} \cdot \eta}{i}}{(M_{1Bstat} + M_{M,Bmax^*})})$$

$$\lambda = \frac{J_{L}}{i^{2} \cdot J_{1}}$$

Determining the permitted torques

Calculation of the permissible maximum acceleration torque

$$\mathsf{M}_{_{2\mathsf{acc},\mathsf{safe}}} = \mathsf{MIN}(\mathsf{M}_{_{2\mathsf{verz},\mathsf{sf}}};\mathsf{M}_{_{2\mathsf{verz},\mathsf{sh}}};\mathsf{M}_{_{2\mathsf{la},\mathsf{stat}}};\mathsf{M}_{_{2\mathsf{acc}}})$$

 $M_{2verz,sf}$ for safety factor foot ≥ 1.1

 $M_{2verz,sh}$ for safety factor pitting ≥ 1.03

 $M_{2la,stat}$ for static load capacity \ge 1.5 (for ball bearings) and \ge 2 (for roller bearings)

The values for $M_{_{2verz,sf\prime}}\,M_{_{2verz,sh}}$ and $M_{_{2la,stat}}\,can$ be found in the calculation program GetBer.

The values for M_{2acc} can be found in catalog ServoStop servo gear units with brake ID 443234_de. The M_{2acc} value also includes the shaft-hub connection.

Calculate the values with the maximum occurring torque and the average speed.

Calculation of the permissible nominal torque

$$\mathsf{M}_{2\mathsf{Nsafe}} = \mathsf{MIN}(\mathsf{M}_{2\mathsf{L10h}};\mathsf{M}_{2\mathsf{N}})$$

 M_{2L10h} bearing service life \geq 20000 hours (with simple weight force and n1m*).

The values for $\rm M_{\rm 2L10h}$ can be found in the calculation program GetBer.

The values for M_{2N} can be found in catalog ServoStop servo gear units with brake ID 443234_de. The M_{2N} value also includes the shaft-hub connection.

Calculation of the permissible emergency off torque for P, PH, PHQ

 $M_{\text{2NOTsafe}} = MIN(2xM_{\text{2acc,safe}};M_{\text{2NOT}} \cdot 0,9;M_{\text{2zap}} \cdot fB_{\text{NOTsafe}})$

Calculation of the permissible emergency off torque for C, F, K, S, PK, PHK, PHQK

$M_{\text{2NOTsafe}} = \text{MIN}(2xM_{\text{2acc,safe}};M_{\text{2NOT}} \cdot 0,9)$

The values for M_{2arc safe} and M_{2zan} (only required for planetary gear units) can be found in the calculation program GetBer.

The values for M_{2NOT} can be found in catalog ServoStop servo gear units with brake ID 443234_de. The M_{2NOT} value also includes the shaft-hub connection.

Determining the permitted forces

Determining the permissible radial acceleration force

 $F_{2rad,acc,safe} = MIN(F_{2rad,acc}; F_{2rad,la,stat})$

 $F_{2rad,acc}$ for safety factor shaft ≥ 1.1

 $F_{2rad,la,stat}$ for static load capacity \geq 1.5 (for ball bearings) and \geq 2 (for roller bearings)

The values for F_{2rad,acc,safe} and F_{2rad,la,stat} can be found in the calculation program GetBer or KissSoft.

Calculation of the permissible axial force

 $F_{2ax,safe} = MIN(F_{2ax100} bzw. F_{2ax20}; F_{2ax,la,stat})$

 $F_{2ax,la,stat}$ for static load capacity \ge 1.5 (for ball bearings) and \ge 2 (for roller bearings)

The values for F_{2ax100} resp. F_{2ax20} can be found in catalog ServoStop servo gear units with brake ID 443234_de. The values for $F_{2ax,la,stat}$ can be found in the calculation program GetBer or KissSoft.

Calculation of the permissible tilting torque

 $M_{2k,acc,safe} = MIN(M_{2k,acc}; M_{2la,stat})$

 $M_{2k,acc}$ for safety factor shaft ≥ 1.1

 $M_{2la,stat}$ for static load capacity \geq 1.5 (for ball bearings) and \geq 2 (for roller bearings)

The values for M_{2k,acc,safe} and M_{2la,stat} can be found in the calculation program GetBer or KissSoft.

Calculation of the permissible nominal radial force

 $\mathsf{F}_{2radNsafe} = \mathsf{MIN}(\mathsf{F}_{2rad,acc,safe}; \mathsf{F}_{2radL10h})$

 $F_{2radL10h}$ bearing service life \geq 20000 hours (with simple weight force and n_{1m^*}).

The values for $F_{2radL10h}$ can be found in the calculation program GetBer.

Nominal force must not be higher than acceleration force $F_{2radN,safe} \le F_{2rad,acc,safe}$

Calculation of the permissible nominal axial force

 $F_{2axNsafe} = MIN(F_{2axN}; F_{2axL10h})$

 $F_{2axL10h}$ bearing service life \geq 20000 hours (with simple weight force and n_{1m^*}).

The values for $F_{2axL10h}$ can be found in the calculation program GetBer.

Nominal force must not be higher than permissible axial force $F_{2axNsafe} \leq F_{2ax,safe}$

Calculation of the permissible nominal breakdown torque

 $M_{2kNsafe} = MIN(M_{2k,acc,safe}; M_{2kL10h})$

 M_{2kL10h} bearing service life \geq 20000 hours (with simple weight force and n_{1m^*}).

The values for M_{2kl10h} can be found in the calculation program GetBer.

Nominal tilting torque must not be higher than acceleration tilting torque $M_{2kN,safe} \leq M_{2k,acc,safe}$

2 Formula symbols

The formula symbols for values actually present in the application are marked with *.

Symbol	Unit	Explanation
Δn ₂	rpm	Speed difference
Δt	s	Timespan
η	%	Efficiency
η _{get}	%	Efficiency of the gear unit at nominal torque
F _{2ax*}	N	Actual axial force at the gear unit output
F _{2ax,la,stat}	N	Axial force for defined static bearing capacity on the gear unit output
	N	Permissible axial force on the gear unit output for gravity-loaded axes
F _{2ax,safe}	N	Permitted axial force at the gear unit output for $n_{2m^*} \le 100$ rpm (without radial force)
F _{2ax100}		Permitted axial force at the gear unit output for $n_{2m^*} \le 20$ rpm (without radial force)
F _{2ax20}	N	
F _{2axL10h}	Nm	Axial force for defined bearing service life on the gear unit output
F _{2axN}	N	Permitted nominal axial force at the gear unit output (without radial force)
F _{2axNsafe}	N	Permitted nominal axial force at the gear unit output (without radial force) for gravity-loaded axes
F _{2rad,acc}	N	Permitted radial acceleration force at the gear unit output
F _{2rad,acc*}	N	Radial acceleration force present at the gear unit output
$F_{2rad,acc,safe}$	N	Permitted radial acceleration force at the gear unit output for gravity-loaded axes
F _{2rad,eq} *	N	Actual equivalent force at the gear unit output
F _{2rad,la,stat}	N	Radial force for defined static bearing capacity on the gear unit output
F _{2radL10h}	Nm	Radial force for defined bearing service life on the gear unit output
F _{2radNsafe}	N	Permissible nominal radial force on the gear unit output for gravity-loaded axes
fB_{eff}	-	Operating factor mass inertia ratio
fB _{NOTsafe}	-	Operating factor safety emergency off
fB _{op}	-	Operating mode operating factor
fB _{safe}	-	Operating factor safe stop
fB _t	-	Runtime operating factor
fB _T	-	Temperature operating factor
fB _{ver}	-	Operating factor gravity-loaded axes
i	-	Gear ratio
J ₁	kgcm ²	Mass moment of inertia relative to the gear unit input
JL	kgcm ²	Mass moment of inertia load
J _{tot}	kgm ²	Total mass moment of inertia (based on the motor shaft)
λ	_	Power factor
LW		Load change: A load change (LW) corresponds to an acceleration and a deceleration.
	Nm	Static braking torque of the brake in the motor adapter (tolerance $+40\%$, -20%)
M _{1Bstat}		
M _{1k}	Nm	Permitted tilting torque at the gear unit input
M _{1k*}	Nm	Existing tilting torque on the gear unit input
M ₂	Nm	Amount of torque on the output
M _{2.1*} – M _{2.4*}	Nm	Actual torque in the respective time segment (1 to 4)
M _{2acc*}	Nm	Actual acceleration torque on the gear unit output
$M_{2acc,safe}$	Nm	Maximum permitted acceleration torque on the gear unit output for gravity-loaded axes
M_{2eq^*}	Nm	Equivalent torque present on the gear unit output
$M_{2k,acc}$	Nm	Permitted acceleration tilting torque at the gear unit output
M_{2k,acc^*}	Nm	Acceleration tilting torque present at the gear unit output
$M_{2k,acc,safe}$	Nm	Permitted acceleration tilting torque on the gear unit output for gravity-loaded axes
M_{2k,eq^*}	Nm	Actual equivalent tilting torque on the gear unit output
M _{2kL10h}	Nm	Tilting torque for defined bearing service life on the gear unit output
M_{2kN}	Nm	Permitted nominal tilting torque at the gear unit output
$M_{2kNsafe}$	Nm	Permitted nominal tilting torque on the gear unit output for gravity-loaded axes
M _{2L10h}	Nm	Torque for defined bearing service life on the gear unit output
M _{2,n*}	Nm	Actual torque in the n-th time segment
M _{2N}	Nm	Nominal torque on the gear unit output (relative to n_{1N})
M _{2NOT}	Nm	Gear unit emergency-off torque on the gear unit output for max. 1000 load changes
2	Nm	Actual emergency off torque for the gear unit on the gear unit output
M _{2NOT*}	INITI	Actual chiefgeney on torque for the gear and on the gear and output
M _{2NOT*} M _{2NOTsafe}	Nm	Gear unit emergency-off torque on the gear unit output for max. 1000 load changes for gravity-

Symbol	Unit	Explanation
M_{2Nsafe}	Nm	Nominal torque on the gear unit output (relative to n_{1N}) for gravity-loaded axes
M _{2la,stat}	Nm	Torque for defined static bearing capacity on the gear unit output
M _{2verz,sf}	Nm	Torque for defined safety factor foot on the gear unit output
M _{2verz,sh}	Nm	Torque for defined safety factor pitting on the gear unit output
M _{2zap}	Nm	Pin torque on the gear unit output
ML	Nm	Load torque
M_{L^*}	Nm	Actual load torque
M _{M,Bmax*}	Nm	Maximum available motor torque for the gear unit in a redundant brake system including any toler-
		ances of the braking torque
n _{1m*}	rpm	Actual average input speed
n _{1max*}	rpm	Actual maximum input speed
n _{1maxDB}	min⁻¹	Maximum permitted input speed of the gear unit in continuous operation
		(at surrounding temperature of 20 °C)
n _{1maxZB}	min⁻¹	Maximum permitted input speed of the gear unit in cyclic operation
		(at surrounding temperature of 20 °C)
n ₂	rpm	Value of output speed
n _{2m*}	rpm	Actual average output speed
n _{2m,1*} - n _{2m,4*}	rpm	Actual average output speed in the respective time segment (1 to 4)
n _{2m,n*}	rpm	Actual average output speed in the n-th time segment
t	S	Time
$t_{1^*} - t_{4^*}$	s	Duration of the respective time segment (1 to 4)
t _{n*}	s	Duration of the n-th time segment

