

PROFINET – PMC SC6 et PMC SI6

Pilz

	Table des matières	2
1	Avant-propos	5
2	Informations utilisateur	6
2.1	Conservation et remise à des tiers	6
2.2	Produit décrit	6
2.3	Actualité	6
2.4	Langue originale	6
2.5	Limitation de responsabilité	6
2.6	Conventions de représentation	7
2.6.1	Représentation des avertissements et informations	7
2.6.2	Conventions typographiques.	
2.6.3	Mathématiques et formules	
2.7	Marques	
2.8	Explication des termes	9
3	Consignes de sécurité	
4	Structure du réseau	
5	Raccordement	
5.1	Choix de câbles appropriés	
5.2	X200, X201 : connexion au bus de terrain	
6	Bon à savoir avant la mise en service	
6.1	Interfaces programme	
6.1.1	Interface programme DS6	
6.1.1.1	Configurer la vue	
6.1.1.2	Navigation via les schémas des connexions sensibles	
6.1.2	Interface programme TIA Portal	
6.2	Signification des paramètres	
6.2.1	Groupes de paramètres	
6.2.2	Genres de paramètres et types de données	
6.2.3	Types de paramètres	
6.2.4	Structure des paramètres	
6.2.5	Visibilité des paramètres	
6.3	Sources de signaux et mappage des données process	
6.4	Enregistrement dans une mémoire non volatile	
7	Mise en service	
7.1	Spécifier la commande	
7.2	DS6 : configurer le servo-variateur	
7.2.1	Créer un projet	
7.2.1.1	Planifier le servo-variateur et l'axe	
7.2.1.2	Configurer la technique de sécurité	
7.2.1.3	Créer d'autres servo-variateurs et modules	
7.2.1.4	Planifier un module	
7.2.1.5	Planifier un projet	
7.2.2	Paramétrer les réglages PROFINET généraux	
7.2.3	Configurer la transmission PZD	

7.2.4	Paramétrer le moteur	32
725	Reproduire le modèle d'axe mécanique	33
7251	Paramétrer le modèle d'axe	33
726	Paramétrer la vitesse de rotation de référence	37
7.2.7	Transférer et enregistrer la configuration	39
728	Tester la configuration	۵۵ 41
7.3	TIA Portal : configurer le réseau PROFINET	43
731	Installer un fichier GSD	
732		40 ΛΛ
7321		۲+۸۸
7322	Planifier un servo-variateur	ΔΔ
7323	Relier logiquement la commande et les servo-variateurs	
7324	Câblare des ports	
733	Configurer les adresses de réseau	
731	Configurer le serve veriateur	
73/1	Attribuer un nom d'annareil	،
7312	Planifier le tálágramme	۲۴. ۸8/
73/3	Réalage isochrone du servo variateur	40
735	Configurer la commande	49 //0
7.3.5		
7.3.0		
1.3.1		
8	Surveillance et diagnostic	
8.1	Surveillance de la connexion	
8.2	Affichage DEL	
8.2.1	État PROFINET	
8.2.2	Connexion au réseau PROFINET	
8.3	Événements	
8.3.1	Événement 52 : Communication	
8.4	Paramètres	
8.4.1	A270 X20x État G6 V0	
8.4.2	A271 PN État G6 V0	
8.4.3	A272 PN module/submodule G6 V1	
8.4.4	A273 PN nom de l'appareil G6 V0	
8.4.5	A274 PN adresse IP G6 V0	
8.4.6	A275 PN masque de sous-réseau G6 V0	
8.4.7	A276 PN passerelle G6 V0	
8.4.8	A279 PN MAC adresses G6 V0	
8.4.9	A280 PN valeurs I&M G6 V1	
9	En savoir plus sur PROFINET ?	60
Q 1		60
9.2	Classes d'annareil	60
0.2 0.3	Communication	
0.0 0.3 1	Communication cyclique : données process	
032	Communication cyclique : données de canal de paramètres	
0321	RDREC et WRREC : paramètres d'entrée et de sortie	
0.0.2.1 0300		
9.9.Z.Z		
9. 4 9.5		
9.0		00 57
9.0	Adresse MAC	07 67
062	Adressa ID	07 67
0.0.Z		

9.6.3	Masque de sous-réseau	
9.6.4	Sous-réseaux et passerelles	
9.6.5	Adressage MAC et IP via le nom d'appareil	
9.7	Temps de cycles	
9.8	Commander et exécuter des actions	
9.9	Ajustage bus de terrain	71
10	Annexe	
10.1	Adresser un paramètre pour l'ensemble de données RECORD	
10.1.1	Déterminer l'Axis_number	
10.1.2	Calculer le Parameter_number	
10.1.3	Déterminer le sous-index	
10.2	RDREC, WRREC : ensemble de données RECORD	74
10.2.1	WRREC : RECORD-Request : structure de l'en-tête	74
10.2.2	RDREC : RECORD-Response : structure de l'en-tête	
10.2.3	RDREC, WRREC : codes d'erreur	
10.2.4	Éléments Attribute et Format : combinaisons possibles	
10.3	Modules de données process	
10.4	Informations complémentaires	
10.5	Abréviations	
	Glossaire	
	Index des illustrations	
	Index des tableaux	

1 Avant-propos

PROFINET, comme norme Industrial Ethernet ouverte, convient particulièrement aux applications qui requièrent une communication rapide à haut débit en combinaison avec les fonctions IT industrielles. PROFINET peut travailler en temps réel et utilise les normes IT comme TCP/IP.

Les servo-variateurs Pilz prennent en charge PROFINET, le perfectionnement de la norme PROFIBUS efficace. Les servo-variateurs sont adaptés à la communication Real-Time des données E/S – et offrent en même temps des possibilités de transmission de l'ensemble de données nécessaires, de paramètres et de fonctions IT.

Dans le cas des servo-variateurs de la gamme PMC SC6 ou PMC SI6, la fonctionnalité de bus de terrain est intégrée dans le micrologiciel.

Les servo-variateurs des gammes PMC SC6 et PMC SI6 ont réussi aux tests de conformité PROFINET, PROFIsafe et PROFIdrive. Il s'agissait de tester l'interface de communication dans le but de garantir la fiabilité et la fonctionnalité de la communication sous-jacente, indépendamment du fabricant.

2 Informations utilisateur

La présente documentation entend vous aider dans la mise en service de servo-variateurs Pilz de la gamme PMC SC6 ou PMC SI6 (IO-Device) en combinaison avec une commande (IO-Controller) via un réseau PROFINET.

Connaissances techniques préalables

Pour pouvoir mettre votre réseau PROFINET en service, il est nécessaire de connaître la technologie de réseau PROFINET et les fondements afférents des systèmes d'automatisation SIMATIC Siemens.

Prérequis techniques

Avant la mise en service de votre réseau PROFINET, vous devez câbler les servo-variateurs et vérifier leur bon fonctionnement. Pour ce faire, suivez les instructions du manuel du servo-variateur concerné.

Avis concernant le genre

Par souci de lisibilité, nous avons renoncé à une différenciation neutre quant au genre. Les termes correspondants s'appliquent en principe aux deux sexes au titre de l'égalité de traitement. Les tournures abrégées ne portent par conséquent aucun jugement de valeur, mais sont utilisées à des fins rédactionnelles uniquement.

2.1 Conservation et remise à des tiers

Comme la présente documentation contient des informations importantes à propos de la manipulation efficiente et en toute sécurité du produit, conservez-la impérativement, jusqu'à la mise au rebut du produit, à proximité directe du produit en veillant à ce que le personnel qualifié puisse la consulter à tout moment.

En cas de remise ou de vente du produit à un tiers, n'oubliez pas de lui remettre la présente documentation.

2.2 Produit décrit

La présente documentation est obligatoire pour :

Servo-variateurs de la gamme PMC SC6 ou PMC SI6 en combinaison avec le logiciel DriveControlSuite (DS6) à partir de V 6.6-B et le micrologiciel correspondant à partir de V 6.6-B-PN.

2.3 Actualité

Vérifiez si le présent document est bien la version la plus récente de la documentation. Vous pouvez télécharger les versions les plus récentes de documents relatives à nos produits sur notre site Web : <u>https://www.pilz.com/fr-INT</u>.

2.4 Langue originale

La langue originale de la présente documentation est l'allemand ; toutes les versions en langues étrangères ont été traduites à partir de la langue originale.

2.5 Limitation de responsabilité

La présente documentation a été rédigée en observant les normes et prescriptions en vigueur et reflète l'état actuel de la technique.

STOBER exclut tout droit de garantie et de responsabilité pour les dommages résultant de la nonobservation de la documentation ou d'une utilisation non conforme du produit. Cela vaut en particulier pour les dommages résultant de modifications techniques individuelles du produit ou de sa planification et de son utilisation par un personnel non qualifié.

2.6 Conventions de représentation

Afin que vous puissiez rapidement identifier les informations particulières dans la présente documentation, ces informations sont mises en surbrillance par des points de repère tels que les mentions d'avertissement, symboles et balisages.

2.6.1 Représentation des avertissements et informations

Les avertissements sont indiqués par des symboles. Ils attirent l'attention sur les dangers particuliers liés à l'utilisation du produit et sont accompagnées de mots d'avertissement correspondants qui indiquent l'ampleur du danger. Par ailleurs, les conseils pratiques et recommandations en vue d'un fonctionnement efficient et irréprochable sont également mis en surbrillance.

PRUDENCE

Prudence signifie qu'un dommage matériel peut survenir

lorsque les mesures de précaution mentionnées ne sont pas prises.

ATTENTION !

Prudence avec triangle de signalisation indique l'éventualité de légères blessures corporelles

lorsque les mesures de précaution mentionnées ne sont pas prises.

AVERTISSEMENT !

Avertissement avec triangle de signalisation indique l'éventualité d'un grave danger de mort

lorsque les mesures de précaution mentionnées ne sont pas prises.

DANGER !

Danger avec triangle de signalisation indique l'existence d'un grave danger de mort

• lorsque les mesures de précaution mentionnées ne sont pas prises.

Information

La mention Information accompagne les informations importantes à propos du produit ou la mise en surbrillance d'une partie de la documentation, qui nécessite une attention toute particulière.

2.6.2 Conventions typographiques

Certains éléments du texte courant sont représentés de la manière suivante.

Information importante	Mots ou expressions d'une importance particulière
Interpolated position mode	En option : nom de fichier, nom de produit ou autres noms
Informations complémentaires	Renvoi interne
http://www.musterlink.de	Renvoi externe

Affichages logiciels et écran

Les représentations suivantes sont utilisées pour identifier les différents contenus informatifs des éléments de l'interface utilisateur logicielle ou de l'écran d'un servo-variateur ainsi que les éventuelles saisies utilisateur.

Menu principal Réglages	Noms de fenêtres, de boîtes de dialogue et de pages ou boutons cités par l'interface utilisateur, noms propres composés, fonctions
Sélectionnez Méthode de référençage A	Entrée prédéfinie
Mémorisez votre <adresse ip="" propre=""></adresse>	Entrée personnalisée
ÉVÉNEMENT 52 : COMMUNICATION	Affichages à l'écran (état, messages, avertissements, dérangements)

Les raccourcis clavier et les séquences d'ordres ou les chemins d'accès sont représentés comme suit.

[CTRL], [CTRL] + [S]	Touche, combinaison de touches
Tableau > Insérer tableau	Navigation vers les menus/sous-menus (entrée du chemin d'accès)

2.6.3 Mathématiques et formules

Pour l'affichage de relations et formules mathématiques, les caractères suivants sont utilisés.

- Soustraction
- + Addition
- × Multiplication
- ÷ Division
- || Valeur absolue

2.7 Marques

Les noms suivants utilisés en association avec l'appareil, ses options et ses accessoires, sont des marques ou des marques déposées d'autres entreprises :

EnDat®	EnDat [®] et le logo EnDat [®] sont des marques déposées de la société Dr. Johannes Heidenhain GmbH basée en Allemagne.
PROFIBUS [®] ,	PROFIBUS [®] et PROFINET [®] sont des marques déposées de
PROFINET [®]	PROFIBUS Nutzerorganisation e. V. en Allemagne.
PROFIdrive [®] , PROFIsafe [®]	PROFIdrive [®] et PROFIsafe [®] sont des marques déposées de la société Siemens AG basée en Allemagne.
SIMATIC [®] ,	SIMATIC [®] et TIA Portal [®] sont des marques déposées de la société
TIA Portal [®]	Siemens AG basée en Allemagne.

Toutes les autres marques qui ne sont pas citées ici sont la propriété de leurs propriétaires respectifs.

Les produits enregistrés comme marques déposées ne sont pas identifiés de manière spécifique dans la présente documentation. Il convient de respecter les droits de propriété existants (brevets, marques déposées, modèles déposés).

2.8 Explication des termes

En raison de la référence aux normes pertinentes et aux produits d'autres fabricants, vous rencontrerez dans cette documentation différentes désignations spécifiques aux fabricants ou aux normes pour le même terme.

Pour une meilleure compréhension, les désignations dans cette documentation ont été normalisées autant que possible à la terminologie spécifique à Pilz. Veuillez vous référer au tableau ci-dessous pour la correspondance entre les désignations Pilz et les autres sources.

Pilz	PROFINET
Commande	IO-Controller
Servo-variateurs	IO-Device

Tab. 1: Correspondance entre la terminologie Pilz et PROFINET

3 Consignes de sécurité

AVERTISSEMENT !

Danger de mort en cas de non-respect des consignes de sécurité et des risques résiduels !

Le non-respect des consignes de sécurité et des risques résiduels figurant dans la documentation du servo-variateur peut provoquer des accidents entraînant des blessures graves ou la mort.

- Respectez les consignes de sécurité figurant dans la documentation du servovariateur.
- Tenez compte des risques résiduels lors de l'évaluation des risques relative à la machine ou l'installation.

AVERTISSEMENT !

Dysfonctionnement de la machine suite à un paramétrage erroné ou modifié !

Si le paramétrage est erroné ou modifié, des dysfonctionnements peuvent survenir sur les machines ou les installations et entraîner des blessures graves ou la mort.

- Respectez les consignes de sécurité figurant dans la documentation du servovariateur.
- Protégez par exemple le paramétrage contre tout accès non autorisé.
- Prenez les mesures appropriées pour d'éventuels dysfonctionnements (par exemple, arrêt d'urgence contrôlé ou arrêt d'urgence).

4 Structure du réseau

Un réseau PROFINET est généralement composé d'un segment PROFINET avec commande (IO-Controller) et de tous les IO-Devices appartenant à cette zone, c.-à-d. les servo-variateurs de la gamme PMC SC6 ou PMC SI6 ainsi qu'un ordinateur personnel comme IO-Supervisor.

Le module d'alimentation PMC PS6 dont vous avez en outre besoin pour les servo-variateurs de la gamme PMC SI6 ne fait pas partie du réseau PROFINET.

La structure du réseau PROFINET est généralement adaptée aux besoins spécifiques au système correspondants. Les servo-variateurs Pilz prennent en charge une topologie en étoile, linéaire ou arborescente.

Tous les participants PROFINET sont intégrés au réseau PROFINET via des commutateurs internes ou externes (100 Mbit/s).

Le logiciel DriveControlSuite DS6 Pilz sert à configurer et à paramétrer les servo-variateurs, via le TIA Portal Siemens par exemple l'ensemble du réseau PROFINET.

Le graphique ci-dessous illustre un réseau PROFINET à l'exemple de la gamme PMC SI6.

Fig. 1: PROFINET : structure du réseau à l'exemple de la gamme PMC SI6

5 Raccordement

Pour la connexion au réseau, PROFINET permet exclusivement les commutateurs qui permettent une structure du réseau flexible et une extension de réseau pratiquement illimitée de plusieurs kilomètres à une vitesse maximale.

5.1 Choix de câbles appropriés

La technique de transmission PROFINET repose sur la norme Fast-Ethernet.

Les liaisons entre les participants d'un réseau PROFINET sont généralement composées de câbles en cuivre symétriques blindés et torsadés par paire (Shielded Twisted Pair, niveau de qualité CAT 5e). Les fibres optiques (FO) peuvent également servir de supports de transmission.

Les signaux sont transmis selon le procédé 100BASE TX, c.-à-d. à une vitesse de transmission de 100 Mbit/s à une fréquence de 125 MHz. Il est possible de transmettre 1440 octets au maximum par télégramme. La longueur de câble maximale est de 100 m.

Les câbles PROFINET existent dans différents modèles et sont adaptés à divers scénarios d'application et différentes conditions ambiantes.

Nous recommandons l'utilisation des câbles et des connecteurs enfichables spécifiés dans la directive de montage PROFINET. Leur usage, leur résistance, leurs propriétés CEM et leur codage de couleur sont adaptés à une utilisation dans le domaine de la technique d'automatisation.

On distingue les câbles de type A, B et C selon le mode de pose :

Type A

Câbles en cuivre blindés à 4 fils pour la pose fixe

- Type B Câbles en cuivre blindés à 4 fils pour la pose flexible
- Type C Câbles en cuivre blindés à 4 fils pour les mouvements permanents

5.2 X200, X201 : connexion au bus de terrain

Pour pouvoir connecter les servo-variateurs à d'autres participants PROFINET, vous pouvez utiliser un commutateur intégré avec les deux connecteurs femelles RJ-45 X200 et X201. Les connecteurs femelles sont situés sur le dessus de l'appareil. Le brochage et le code couleur correspondants répondent à la norme EIA/TIA-T568B.

Connecteur femelle	Broche	Désignation	Fonction
1 2 7 8	1	Tx+	Communication
	2	Tx-	
	3	Rx+	
	4	—	—
	5	_	—
	6	Rx-	Communication
	7	_	—
	8	_	_

Tab. 2: Description du raccordement X200 et X201

6 Bon à savoir avant la mise en service

Les chapitres ci-après vous aident dans la mise en place rapide de l'interface programme avec les désignations de fenêtre correspondantes et vous fournissent les informations importantes concernant les paramètres et l'enregistrement général de votre planification.

6.1 Interfaces programme

Les chapitres suivants contiennent les interfaces programme des composants logiciels décrits.

6.1.1 Interface programme DS6

Le logiciel de mise en service DriveControlSuite (DS6) offre une interface utilisateur graphique pour la planification, le paramétrage et la mise en service rapides et efficaces de votre projet d'entraînement. Si une situation de maintenance se présente, vous pouvez analyser les informations de diagnostic telles que les états de service, la mémoire des dérangements et le compteur de dérangements de votre projet d'entraînement à l'aide de DriveControlSuite.

Information

L'interface programme de DriveControlSuite est disponible en allemand, en anglais et en français. Pour changer la langue de l'interface programme, sélectionnez le menu Réglages > Langue.

Information

Vous pouvez accéder à l'aide de DriveControlSuite dans la barre de menus en cliquant sur Menu Aide > Aide sur DS6 ou via la touche [F1] de votre clavier. En fonction de la zone de programme dans laquelle vous appuyez sur [F1], une rubrique d'aide correspondant au thème s'ouvre.

Fig. 2: DS6 : interface programme

N°	Zone	Description
1	Barre de menus	Les menus Fichier, Affichage, Réglages et Fenêtre peuvent être utilisés pour ouvrir et enregistrer les projets, afficher et masquer les fenêtres de programme, sélectionner la langue d'interface et les différents niveaux d'accès et naviguer entre les différentes fenêtres dans la zone de travail.
2	Barre d'outils	La barre d'outils vous permet d'accéder rapidement aux fonctions fréquemment utilisées, telles que l'ouverture et l'enregistrement de projets ainsi que l'affichage et le masquage de fenêtres dans l'interface programme.
3	Arborescence de projet	L'arborescence de projet représente la structure de votre projet d'entraînement sous la forme de modules et de servo-variateurs. Sélectionnez dans un premier temps un élément dans l'arborescence de projet afin de pouvoir le traiter dans le menu de projet.
4	Menu de projet	Le menu de projet comprend différentes fonctions de traitement du projet, du module et des servo-variateurs. Le menu de projet s'adapte à l'élément que vous avez sélectionné dans l'arborescence de projet.
5	Zone de travail	Les différentes fenêtres que vous pouvez utiliser pour traiter votre projet d'entraînement, telles que la boîte de dialogue de planification, les assistants, la liste des paramètres ou l'outil d'analyse Scope, s'ouvrent dans la zone de travail.
6	Contrôle des paramètres	Le contrôle des paramètres détecte les anomalies et les incohérences constatées lors du contrôle de plausibilité des paramètres calculables.
7	Messages	Les entrées dans les messages documentent l'état de connexion et de communication des servo-variateurs, les entrées erronées interceptées par le système, les erreurs survenues lors de l'ouverture d'un projet ou les infractions aux règles dans la programmation graphique.
8	Listes de paramètres variables	Vous pouvez utiliser les listes de paramètres variables pour regrouper des paramètres quelconques en vue d'un aperçu rapide dans des listes de paramètres individuelles.
9	Barre d'état	La barre d'état comporte des informations sur la version logicielle et, lors de processus comme le chargement de projets, des informations complémentaires sur le fichier de projet, les appareils et la progression du processus.

6.1.1.1 Configurer la vue

Vous pouvez modifier la visibilité et la disposition des zones et des fenêtres dans DriveControlSuite, par exemple pour optimiser l'espace disponible dans la zone de travail lorsque vous travaillez sur des écrans plus petits.

Afficher/masquer les zones

Utilisez les icônes de la barre d'outils ou les entrées du menu Vue pour afficher ou masquer certaines zones dans DriveControlSuite selon vos besoins.

Icône	Entrée	Description
-	Réinitialiser	Réinitialise la vue aux paramètres d'usine.
	Projet	Affiche/masque la fenêtre Projet (arborescence de projet, menu de projet).
*	Messages	Affiche/masque la fenêtre Messages.
\checkmark	Contrôle des paramètres	Affiche/masque la fenêtre Contrôle des paramètres.
4	Listes de paramètres variables	Affiche/masque la fenêtre Listes de paramètres variables.

Disposer et regrouper les zones

Vous pouvez détacher et repositionner les différentes zones par glisser-déposer : si vous faites glisser une fenêtre détachée vers le bord de DriveControlSuite, vous pouvez la relâcher dans une zone mise en surbrillance, à côté ou au-dessus d'une autre fenêtre, pour l'ancrer à nouveau.

Lorsque vous relâchez la fenêtre sur une autre fenêtre, les deux zones sont fusionnées en une seule fenêtre et vous pouvez passer d'une zone à l'autre à l'aide d'onglets.

6.1.1.2 Navigation via les schémas des connexions sensibles

Fig. 3: DriveControlSuite : navigation via les liens textuels et les symboles

Pour vous illustrer graphiquement l'ordre de traitement des valeurs de consigne et des valeurs réelles, l'utilisation des signaux ou la disposition des composants d'entraînement et vous faciliter la configuration des paramètres correspondants, ils s'affichent sur les pages de l'assistant de la zone de travail sous forme de schémas des connexions.

Les liens textuels colorés en bleu ou les symboles cliquables désignent les liens internes au programme. Ils renvoient aux pages d'assistants correspondantes et sont ainsi utiles pour l'accès en un clic aux pages détaillées.

6.1.2 Interface programme TIA Portal

Le Totally Integrated Automation Portal (TIA Portal) Siemens offre une plateforme pour la mise en service de votre système PROFINET. Le TIA Portal se compose de la vue du portail et de la vue du projet.

Vue du TIA Portal

La fonctionnalité globale TIA est divisée en différents domaines d'activités auxquels vous pouvez accéder via les portails. Le graphique ci-dessous contient les éléments d'interface de la vue du TIA Portal importants pour la présente documentation.

Fig. 4: TIA Portal : interface programme de la vue du portail

N°	Zone	Description
1	Sélection d'un portail	La fonction de sélection d'un portail permet d'accéder à divers portails pour différentes tâches et fonctions.
2	Fonctions des portails	Les fonctions des portails sont disponibles ici selon le portail sélectionné.
3	Vue du projet	Vous pouvez changer de bouton pour accéder à la vue du projet.

Vue du projet TIA

La vue du projet TIA vous donne accès à toutes les composantes d'un projet. Le graphique cidessous contient les éléments d'interface de la vue du TIA Portal importants pour la présente documentation.

Fig. 5: TIA Portal : interface programme de la vue du projet

N°	Zone	Description
1	Navigateur du projet	Le navigateur du projet offre un accès à tous les composants de votre projet TIA.
2	Vue détaillée	La vue détaillée montre les informations additionnelles relatives à un objet sélectionné.
3	Zone de travail	La zone de travail est prévue par exemple pour le traitement d'objets dans la vue de la topologie, la vue du réseau ou la vue des appareils.
4	Fenêtre d'inspection	La fenêtre d'inspection montre les informations additionnelles relatives à un objet sélectionné.
5	Task Cards	Les Task Cards sont disponibles en fonction de l'objet sélectionné et permettent par exemple un accès au catalogue du matériel, aux outils en ligne, aux tâches ou aux bibliothèques.
6	Vue du portail	Vous pouvez changer de bouton pour accéder à la vue du portail.

6.2 Signification des paramètres

Personnalisez les fonctions du servo-variateur à l'aide des paramètres. Les paramètres visualisent par ailleurs les valeurs réelles actuelles (vitesse réelle, couple réel...) et déclenchent des actions comme Sauvegarder valeurs, Test de phase etc.

Mode de lecture identifiant de paramètre

Un identifiant de paramètre est composé des éléments suivants, les formes abrégées, c.-à-d. uniquement la saisie d'une coordonnée ou la combinaison d'une coordonnée et d'un nom, étant possibles.

6.2.1 Groupes de paramètres

Les paramètres sont affectés à différents groupes selon des thèmes. Les servo-variateurs distinguent les groupes de paramètres suivants.

Groupe	Thème
А	Servo-variateur, communication, temps de cycle
В	Moteur
С	Machine, vitesse, couple/force, comparateurs
D	Valeur de consigne
E	Affichage
F	Bornes, entrées et sorties analogiques et numériques, frein
G	Technologie – 1re partie (en fonction de l'application)
Н	Encodeur
I	Motion (tous les réglages de mouvement)
J	Blocs de déplacement
К	Panneau de commande
L	Technologie – 2e partie (en fonction de l'application)
М	Profils (en fonction de l'application)
Ν	Fonctions additionnelles (en fonction de l'application ; p. ex. boîte à cames étendue)
Р	Paramètres personnalisés (programmation)
Q	Paramètres personnalisés, en fonction de l'instance (programmation)
R	Données de fabrication du servo-variateur, du moteur, des freins, de l'adaptateur moteur, du réducteur et du motoréducteur
S	Safety (technique de sécurité)
Т	Scope
U	Fonctions de protection
Z	Compteur de dérangements

Tab. 3: Groupes de paramètres

6.2.2 Genres de paramètres et types de données

Outre le classement par thèmes dans différents groupes, tous les paramètres correspondent à un type de données et à un type de paramètres précis. Le type de données d'un paramètre s'affiche dans la liste de paramètres, tableau Propriétés. Les liens qui existent entre les types de paramètres, les types de données et leur plage de valeurs sont indiqués dans le tableau ci-dessous.

Type de données	Type de paramètres	Longueur	Plage de valeurs (décimales)
INT8	Entier ou sélection	1 octet (avec signe)	-128 – 127
INT16	Entier	2 octets (1 mot, avec signe)	-32768 – 32767
INT32	Entier ou position	4 octets (1 double-mot, avec signe)	-2 147 483 648 – 2 147 483 647
BOOL	Nombre binaire	1 bit (interne : LSB en 1 octet)	0, 1
OCTET	Nombre binaire	1 octet (sans signe)	0 – 255
WORD	Nombre binaire	2 octets (1 mot, sans signe)	0 – 65535
DWORD	Nombre binaire ou adresse de paramètre	4 octets (1 double-mot, sans signe)	0 – 4 294 967 295
REAL32 (type single conformément à IEE754)	Nombre à virgule flottante	4 octets (1 double-mot, avec signe)	-3,40282 × 10 ³⁸ – 3,40282 × 10 ³⁸
STR8	Texte	8 caractères	—
STR16	Texte	16 caractères	
STR80	Texte	80 caractères	

Tab. 4: Paramètres : types de données, types de paramètres, valeurs possibles

Types de paramètres : utilisation

- Entier, nombre à virgule flottante
 Dans le cas de processus de calcul généraux
 Exemple : valeurs de consigne et valeurs réelles
- Sélection
 Valeur numérique à laquelle est affectée une signification directe
 Exemple : sources de signaux ou de valeurs de consigne
- Nombre binaire

Informations sur les paramètres orientées bit et regroupées sous forme binaire Exemple : mots de commande et mots d'état

Position

Entier en combinaison avec les unités correspondantes et les décimales Exemple : valeurs réelles et de valeurs consigne de positions

- Vitesse, accélération, décélération, à-coup
 Nombre à virgule flottante en relation avec les unités associées
 Exemple : valeurs réelles et valeurs de consigne pour vitesse, accélération, décélération, à-coups
- Adresse de paramètre
 Référençage d'un paramètre
 Exemple : dans la AO1 source F40, la n-Moteur filtré E08 peut p. ex. être paramétrée
- Texte
 Sorties ou messages

6.2.3 Types de paramètres

On distingue les types de paramètres suivants.

Type de paramètre	Description	Exemple
Paramètres simples	Se composent d'un groupe et d'une ligne avec une valeur fixe définie.	A21 Résistance de freinage R : valeur = 100 ohms
Paramètres Array	Se composent d'un groupe, d'une ligne et de plusieurs éléments (listés) continus possédant les mêmes propriétés mais toutefois des valeurs différentes.	 A10 Niveau d'accès A10[0] Niveau d'accès : valeur = niveau d'accès via l'unité de commande
		 A10[2] Niveau d'accès : valeur = niveau d'accès via CANopen et EtherCAT
		 A10[4] Niveau d'accès : valeur = niveau d'accès via PROFINET
Paramètres Record	Se composent d'un groupe, d'une ligne et de plusieurs éléments (listés) continus possédant des propriétés différentes et des valeurs différentes.	A00 Sauvegarder valeurs
		 A00[0] Démarrer : valeur = démarrer l'action
		 A00[1] Progression : valeur = afficher la progression de l'action
		 A00[2] Résultat : valeur = afficher le résultat de l'action

Tab. 5: Types de paramètres

6.2.4 Structure des paramètres

Chaque paramètre possède des coordonnées spécifiques qui correspondent à la structure ci-après.

Axe (en option)

Axe auquel un paramètre spécifique à l'axe est affecté ; supprimé pour les paramètres globaux (plage de valeurs : 1 - 4).

Groupe

Groupe auquel un paramètre appartient thématiquement (plage de valeurs : A - Z).

- Ligne
 Distingue les paramètres à l'intérieur d'un groupe de paramètres (plage de valeurs : 0 999).
- Élément (en option)
 Éléments d'un paramètre Array ou Record (plage de valeurs : 0 16000).

6.2.5 Visibilité des paramètres

La visibilité d'un paramètre est contrôlée par le niveau d'accès que vous définissez dans DriveControlSuite ainsi que par les propriétés que vous planifiez pour le servo-variateur concerné (p. ex. matériel, micrologiciel et application). Un paramètre peut, en outre, être affiché ou masqué en fonction d'autres paramètres ou réglages : par exemple, les paramètres d'une fonction additionnelle ne s'affichent que lorsque vous activez la fonction additionnelle en question.

Niveau d'accès

Les possibilités d'accès aux différents paramètres du logiciel sont hiérarchisées et divisées en différents niveaux. Cela signifie qu'il est possible de masquer spécifiquement des paramètres et ainsi de verrouiller leurs possibilités de configuration à partir d'un certain niveau.

Chaque paramètre possède un niveau d'accès pour l'accès en lecture seule (visibilité) et un niveau d'accès pour l'accès en écriture seule (éditabilité). On distingue les niveaux suivants :

- Niveau 0
 Paramètres élémentaires
- Niveau 1
 Paramètres essentiels d'une application
- Niveau 2

Paramètres essentiels pour la maintenance avec de nombreuses possibilités de diagnostic

Niveau 3

Tous les paramètres nécessaires pour la mise en service et l'optimisation d'une application

Le paramètre A10 Niveau d'accès règle l'accès général aux paramètres :

- Via CANopen ou EtherCAT (A10[2])
- Via PROFINET (A10[3])

Information

Il est impossible de lire ou d'écrire les paramètres masqués dans DriveControlSuite lors de la communication via le bus de terrain.

Matériel

Les paramètres dont vous disposez dans DriveControlSuite sont p. ex. déterminés par la gamme que vous sélectionnez dans la boîte de dialogue de planification du servo-variateur, ou par l'option ou non de planification d'un module optionnel. En général, seuls les paramètres dont vous avez besoin pour le paramétrage du matériel configuré s'affichent.

Micrologiciel

Grâce au perfectionnement et à la maintenance des fonctions des servo-variateurs, de nouveaux paramètres ainsi que de nouvelles versions des paramètres existants sont sans cesse implémentés dans DriveControlSuite et dans le micrologiciel. Les paramètres vous sont indiqués dans le logiciel en fonction de la version DriveControlSuite utilisée et de la version de micrologiciel planifié du servo-variateur concerné.

Applications

Les applications se distinguent en règle générale par leurs fonctions et leur commande. Par conséquent, chaque application offre des paramètres différents.

6.3 Sources de signaux et mappage des données process

La transmission de signaux de commande et de valeurs de consigne dans DriveControlSuite satisfait aux principes suivants.

Sources de signaux

Les servo-variateurs sont commandés soit via un bus de terrain, en mode mixte avec système de bus de terrain et bornes ou exclusivement via des bornes.

L'option de récupération des signaux de commande et des valeurs de consigne de l'application via un bus de terrain ou via des bornes peut être configurée à l'aide des paramètres de sélection correspondants désignés comme sources de signaux.

Dans le cas d'une commande via le bus de terrain, les paramètres sont sélectionnés comme sources pour les signaux de commande ou les valeurs de consigne qui doivent faire partie du mappage des données process suivant ; dans le cas d'une commande via des bornes, les entrées analogiques ou numériques correspondantes sont indiquées directement.

Mappage des données process

Si vous utilisez un système de bus de terrain et si vous avez sélectionné les paramètres source pour les signaux de commande et les valeurs de consigne, configurez pour finir les réglages spécifiques au bus de terrain, p. ex. l'affectation des canaux de données process pour la transmission des données process de réception et d'émission.

6.4 Enregistrement dans une mémoire non volatile

Toutes les planifications, tous les paramétrages ainsi que les modifications des valeurs de paramètres associées prennent effet après la transmission au servo-variateur, mais ne sont enregistrés que dans une mémoire volatile.

Enregistrement sur un servo-variateur

Pour enregistrer la configuration de manière non volatile sur un servo-variateur, vous avez les possibilités suivantes :

- Enregistrer la configuration via l'assistant Sauvegarder valeurs : Menu de projet > Zone Assistants > Axe planifié > Assistant Sauvegarder valeurs : sélectionnez l'action Sauvegarder valeurs
- Enregistrer la configuration via la liste de paramètres : Menu de projet > Zone Liste de paramètres > Axe planifié > Groupe A : servo-variateurs > A00 Sauvegarder valeurs : réglez le paramètre A00[0] sur la valeur 1: Actif
- Enregistrer la configuration à l'aide de la touche S1 : servo-variateur avec touche S1 : maintenez la touche enfoncée pendant 3 s

Enregistrement sur tous les servo-variateurs dans le cadre d'un projet

Pour enregistrer la configuration de manière non volatile sur plusieurs servo-variateurs, vous avez les possibilités suivantes :

- Enregistrer la configuration via la barre d'outils : Barre d'outils > Icône Enregistrer les valeurs : cliquez sur l'icône Enregistrer les valeurs
- Enregistrer la configuration dans la fenêtre Fonctions en ligne : Menu de projet > Bouton Liaison en ligne > Fenêtre Fonctions en ligne : cliquez sur Enregistrer les valeurs (A00)

Information

Ne mettez pas le servo-variateur hors tension pendant l'enregistrement. Si la tension d'alimentation de la pièce de commande est interrompue pendant l'enregistrement, le servo-variateur démarre à la prochaine mise sous tension avec le dérangement 40 : Données invalides. Pour mener à bien le processus d'enregistrement, la configuration doit être à nouveau enregistrée de manière non volatile.

7 Mise en service

Les chapitres ci-dessous décrivent la mise en service d'un réseau PROFINET composé d'une commande Siemens et de plusieurs servo-variateurs de Pilz, avec DriveControlSuite et le TIA Portal Siemens.

Pour un meilleur suivi des différentes étapes de la mise en service, nous citons en **exemple** l'environnement système suivant comme condition préalable :

- Servo-variateurs de la gamme PMC SC6 ou PMC SI6 à partir de la version de micrologiciel 6.6-B-PN
- Logiciel de mise en service DS6 à partir de la version 6.6-B

en combinaison avec

- Commande SIMATIC S7-1500 de Siemens
- Logiciel d'automatisation Totally Integrated Automation Portal (TIA Portal) V16 de Siemens

La mise en service se déroule selon les étapes suivantes...

- 1. Spécifiez d'abord la commande des servo-variateurs.
- 2. DriveControlSuite :

planifiez tous les servo-variateurs de votre réseau PROFINET (commande de l'appareil, application et données process), paramétrez les réglages PROFINET généraux, le moteur ainsi qu'éventuellement le modèle d'axe ou la vitesse de rotation de référence, et transférez ensuite votre configuration vers les servo-variateurs de votre réseau PROFINET.

3. TIA Portal :

reproduisez ensuite votre réseau PROFINET réel dans le TIA Portal et configurez les différents participants. Transférez la configuration vers la commande et mettez votre réseau PROFINET en service.

Information

Avant d'entamer la mise en service de votre réseau PROFINET à l'aide de DriveControlSuite et du TIA Portal, vous devez relier entre eux tous les participants à votre réseau PROFINET.

7.1 Spécifier la commande

Les options décrites ci-dessous sont disponibles pour commander les servo-variateurs Pilz via le TIA Portal.

Objets technologiques de Siemens (TO)

Objet technologique	Description	Application
TO_SpeedAxis	Commande d'un axe à régulation de vitesse	Application basée sur la commande
TO_PositioningAxis, TO_SynchronousAxis	Commande d'un axe à régulation de position	Application basée sur la commande
TO_BasicPos	Commande d'un axe à régulation de position	Application basée sur l'entraînement

Tab. 6: Objets technologiques de Siemens

Vous pouvez accéder aux objets technologiques directement dans le TIA Portal et les ajouter à votre commande.

Modules fonctionnels Siemens (FB) depuis DriveLib

Bloc fonctionnel	Description	Application
FB SINA_SPEED	Commande d'un axe à régulation de vitesse	Application basée sur l'entraînement
FB SINA_POS	Commande d'un axe à régulation de position	Application basée sur l'entraînement

Tab. 7: Modules fonctionnels Siemens DriveLib

Les blocs fonctionnels peuvent être téléchargés gratuitement sur le site web de Siemens et importés dans le TIA Portal (<u>https://support.industry.siemens.com</u>). Si vous utilisez déjà les blocs fonctionnels dans le TIA Portal, assurez-vous que vous travaillez avec la dernière version.

Possibilités de combinaison

Le tableau suivant montre des **exemples** de combinaisons possibles d'objets technologiques ou de blocs fonctionnels avec les classes d'application et les télégrammes disponibles.

Ces exemples vous montrent comment configurer votre commande lors de la mise en service dans le TIA Portal.

Commande	Classe d'application	Télégrammes
TO_SpeedAxis	AC1	Télégrammes par défaut 1, 2, 3
TO_PositioningAxis, TO_SynchronousAxis	AC4	Télégrammes par défaut 3, 5 ou télégrammes 102, 105 Siemens (en option en combinaison avec le télégramme additionnel 750 Siemens)
TO_BasicPos	AC3	Télégramme Siemens 111
FB SINA_SPEED	AC1	Télégramme par défaut 1
FB SINA_POS	AC3	Télégramme Siemens 111

Tab. 8: Combinaisons : bloc fonctionnel ou objet technologique avec télégramme

Pour de plus amples informations sur les classes d'application et les télégrammes, veuillez consulter le manuel d'application correspondant PROFIdrive (voir Informations complémentaires [12] 79]).

Information

La présente documentation se concentre sur les réglages spécifiques aux appareils qui doivent être pris en compte pour les servo-variateurs de Pilz pour le paramétrage des objets technologiques de Siemens ou pour la commande des blocs fonctionnels. Pour les réglages qui ne sont pas décrits en détail, reportez-vous à la documentation Siemens.

7.2 DS6 : configurer le servo-variateur

Planifiez et configurez tous les servo-variateurs de votre système d'entraînement dans DriveControlSuite DS6 (voir chapitre Interface programme DS6 [1]13]).

Information

Les étapes nécessaires à la mise en service PROFINET sont décrites sur la base de l'application basée sur l'entraînement PROFIdrive en combinaison avec la commande de l'appareil PROFIdrive.

Vous trouverez de plus amples informations sur la mise en service de l'application dans le manuel d'application correspondant PROFIdrive (voir Informations complémentaires [[]] 79]).

Information

Exécutez impérativement les étapes mentionnées ci-après dans l'ordre indiqué !

Certains paramètres sont dépendants les uns des autres et ne sont accessibles que si vous avez procédé auparavant à certains réglages. Suivez les étapes dans l'ordre prescrit afin de pouvoir finaliser intégralement le paramétrage.

7.2.1 Créer un projet

Afin de pouvoir configurer tous les servo-variateurs et axes de votre système d'entraînement à l'aide du DriveControlSuite, vous devez les saisir dans le cadre d'un projet.

7.2.1.1 Planifier le servo-variateur et l'axe

Créez un nouveau projet et planifiez le premier servo-variateur et l'axe correspondant.

Information

Assurez-vous de planifier la bonne gamme dans l'onglet Servo-variateur. La gamme planifiée ne pourra plus être modifiée.

Créer un nouveau projet

- 1. Démarrez le DriveControlSuite.
- 2. Cliquez sur Créer un nouveau projet sur l'écran d'accueil.
 - ⇒ Le nouveau projet est créé et la boîte de dialogue de planification s'ouvre pour le premier servo-variateur.
 - ⇒ Le bouton Servo-variateur est actif.

Planifier un servo-variateur

- Onglet Propriétés : établissez dans DriveControlSuite la relation entre votre schéma de connexion et le servovariateur à planifier.
 - 1.1. Référence : définissez le code de référence (code d'équipement) du servo-variateur.
 - 1.2. Désignation : dénommez le servo-variateur de manière univoque.
 - 1.3. Version : attribuez une version à votre planification.
 - Description : mémorisez éventuellement des informations complémentaires utiles (p. ex. historique des modifications).
- Onglet Servo-variateur : sélectionnez la gamme, le type de servo-variateur et la variante du micrologiciel du servovariateur.
 - 2.1. Micrologiciel : sélectionnez la version PROFINET 6.x -PN.
- Onglet Modules optionnels, Module de sécurité : si le servo-variateur fait partie d'un circuit de sécurité, sélectionnez le module de sécurité correspondant.
- 4. Onglet Commande de l'appareil : planifiez la commande de base du servo-variateur.
 - 4.1. Commande de l'appareil : sélectionnez la commande de l'appareil PROFIdrive.
 - 4.2. Données process Rx, données process Tx : sélectionnez PROFINET Rx et PROFINET Tx pour le transfert des données process PROFINET.

Planifier un axe

- 1. Cliquez sur Axe A.
- Onglet Propriétés : établissez dans DriveControlSuite la relation entre votre schéma de connexion et l'axe à planifier.
 - 2.1. Référence : définissez le code de référence (code d'équipement) de l'axe.
 - 2.2. Désignation : dénommez l'axe de manière univoque.
 - 2.3. Version : attribuez une version à votre planification.
 - Description : mémorisez éventuellement des informations complémentaires utiles (p. ex. historique des modifications).
- 3. Onglet Application : sélectionnez l'application PROFIdrive.
- 4. Onglet Moteur :

sélectionnez le type de moteur que vous exploitez via cet axe. Si vous utilisez des moteurs de fabricants tiers, entrez ultérieurement les données moteur correspondantes.

- 5. Répétez les étapes pour l'axe B (seulement dans le cas de régulateurs double axe).
- 6. Cliquez sur OK pour confirmer.

7.2.1.2 Configurer la technique de sécurité

Si le servo-variateur fait partie d'un circuit de sécurité, vous devez configurer la technique de sécurité en fonction des étapes de mise en service décrites dans le manuel correspondant (voir Informations complémentaires [12]79]).

7.2.1.3 Créer d'autres servo-variateurs et modules

Dans DriveControlSuite, tous les servo-variateurs que comporte un projet sont regroupés via des modules. Si vous ajoutez un nouveau servo-variateur à votre projet, affectez-le toujours à un module existant. Regroupez par exemple des servo-variateurs dans un module si ces derniers se trouvent dans la même armoire électrique ou s'ils exploitent en commun la même pièce de machine.

Créer un servo-variateur

- 1. Dans l'arborescence, sélectionnez votre projet P1 > Module M1 > Menu contextuel Créer nouveau servo-variateur.
 - ⇒ Le servo-variateur est alors créé dans l'arborescence de projet et la boîte de dialogue de planification s'ouvre.
- 2. Planifiez le servo-variateur comme décrit sous Planifier le servo-variateur et l'axe.
- 3. Répétez les étapes pour tous les autres servo-variateurs que vous souhaitez planifier.

Créer un module

- 1. Dans l'arborescence, sélectionnez votre projet P1 > Menu contextuel Créer nouveau module.
 - \Rightarrow Le module est alors créé dans l'arborescence de projet.
- 2. Planifiez le module comme décrit sous Planifier un module [2] 30].
- 3. Répétez les étapes pour tous les autres modules que vous souhaitez planifier.

7.2.1.4 Planifier un module

Attribuez un nom univoque à votre module, entrez le code de référence et mémorisez, si vous le souhaitez, les informations additionnelles comme la version et l'historique des modifications du module.

1. Dans l'arborescence de projet, marquez le module et cliquez dans le menu de projet sur Planification.

⇒ La boîte de dialogue de planification du module s'ouvre.

- 2. Dans DriveControlSuite, établissez la relation entre votre schéma de connexion et le module.
 - 2.1. Référence : définissez le code de référence (code d'équipement) du module.
 - 2.2. Désignation : dénommez le module de manière univoque.
 - 2.3. Version : attribuez une version à votre module.
 - Description : mémorisez éventuellement des informations complémentaires utiles (p. ex. historique des modifications).
- 3. Cliquez sur OK pour confirmer.

7.2.1.5 Planifier un projet

Attribuez un nom univoque à votre projet, entrez le code de référence et mémorisez, si vous le souhaitez, les informations additionnelles comme la version et l'historique des modifications du projet.

- 1. Dans l'arborescence de projet, marquez le projet et cliquez dans le menu de projet sur Planification.
 - ⇒ La boîte de dialogue de planification du projet s'ouvre.
- 2. Dans DriveControlSuite, établissez la relation entre votre schéma de connexion et le projet.
 - 2.1. Référence : définissez le code de référence (code d'équipement) du projet.
 - 2.2. Désignation : dénommez le projet de manière univoque.
 - 2.3. Version : attribuez une version à votre projet.
 - Description : mémorisez éventuellement des informations complémentaires utiles (p. ex. historique des modifications).
- 3. Cliquez sur OK pour confirmer.

7.2.2 Paramétrer les réglages PROFINET généraux

- ✓ Vous avez planifié les données process PROFINET Rx et PROFINET Tx pour le servo-variateur.
- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant PROFINET.
- A100 Mise à l'échelle bus de terrain : laissez la valeur par défaut sur 1: Valeur brute (les valeurs sont transférées telles quelles).
- 4. A273 PN nom de l'appareil : les éléments [0] à [2] affichent le nom de l'appareil PROFINET attribué dans le TIA Portal lorsqu'une liaison en ligne est établie entre le servo-variateur et la commande. Vous pouvez, en option, inscrire le nom de l'appareil dans les éléments [3] à [5]. Dans ce cas, il n'est plus nécessaire d'affecter le nom de l'appareil dans le TIA Portal.
- 5. A109 PZD-Timeout :

définissez le temps qui, additionné au temps du chien de garde de la commande (TIA Portal : temps de surveillance de réponse), donne la durée de la défaillance tolérée pour la surveillance de la communication PZD dans le réseau PROFINET (valeur par défaut : 20 ms).

7.2.3 Configurer la transmission PZD

Le canal PZD (canal de données process) sert à la transmission cyclique en temps réel des informations de commande et d'état ainsi que des valeurs réelles entre une commande (IO-Controller) et un servo-variateur (IO-Device).

Un élément important lors de cet échange de données est le sens du flux de données. Système PROFINET IO distingue – du point de vue du servo-variateur – les données process de réception (= Receive PZD, RxPZD) et les données process d'émission (= Transmit PZD, TxPZD). Les servo-variateurs Pilz sont compatibles avec une affectation flexible des valeurs de paramètres à transférer.

Les données process peuvent être transmises via les axes A et B avec un maximum de 48 paramètres en tout (24 par axe).

Les données process échangées entre la commande et le servo-variateur lors de la transmission cyclique de données dépendent de l'application planifiée.

Avec l'application PROFIdrive, le mappage des données process s'effectue automatiquement lors de l'établissement de la liaison entre la commande et le servo-variateur et en fonction du télégramme sélectionné, le paramétrage manuel n'est plus nécessaire.

Des informations complémentaires concernant les objets de communication pris en charge du profil PROFIdrive figurent dans le manuel d'application correspondant.

7.2.4 Paramétrer le moteur

Vous avez planifié l'un des moteurs suivants :

Moteur brushless synchrone avec encodeur EnDat 2.2 numérique ou EnDat 3 (avec frein optionnel)

La planification du moteur correspondant transmet automatiquement les valeurs de limitation de courant et de couple ainsi que les données de température aux paramètres correspondants des différents assistants. En même temps, toutes les données supplémentaires relatives au frein et à l'encodeur sont appliquées.

Moteur Lean sans encodeur (avec frein optionnel)

La planification du moteur correspondant transmet automatiquement les valeurs de limitation de courant et de couple ainsi que les données de température aux paramètres correspondants des différents assistants. Il ne vous reste plus qu'à paramétrer la longueur de câble utilisée. Les temps de ventilation et de retombée du frein sont aussi déjà mémorisés. Il ne vous reste plus qu'à activer le frein.

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Moteur.
- B101 Longueur de câble : sélectionnez la longueur de câble de puissance utilisée.
- 4. Répétez les étapes pour le 2e axe (seulement dans le cas de régulateurs double axe).

Activez ensuite le frein.

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur le premier axe planifié.
- 2. Sélectionnez l'assistant Frein.
- F00 Frein : sélectionnez 1: Actif.
- 4. Répétez les étapes pour le 2e axe (seulement dans le cas de régulateurs double axe).

Protection du moteur

Le servo-variateur dispose d'un modèle i²t du moteur, un modèle de calcul pour la surveillance thermique du moteur. Pour l'activer et mettre en place la fonction de protection, procédez – différemment des préréglages – aux réglages suivants : U10 = 2: Avertissement et U11 = 1,00 s. Ce modèle peut être utilisé en alternative ou en complément d'une surveillance thermique du moteur.

7.2.5 Reproduire le modèle d'axe mécanique

Pour la commande en combinaison avec le télégramme 111, vous devez reproduire votre environnement mécanique complet dans DriveControlSuite afin de pouvoir mettre en fonctionnement votre chaîne cinématique réelle avec un ou plusieurs servo-variateurs.

Pour tous les autres télégrammes, au lieu de modifier le modèle d'axe, paramétrez directement les limitations nécessaires à l'étape suivante (voir

Paramétrer la vitesse de rotation de référence [137]).

7.2.5.1 Paramétrer le modèle d'axe

Paramétrez la structure de votre entraînement en respectant l'ordre chronologique suivant :

- Définir le modèle d'axe
- Ajuster l'axe
- Paramétrer la fenêtre de position et de vitesse
- Limiter un axe (en option)
 - · Limiter une position
 - · Limiter la vitesse, l'accélération et les à-coups
 - Limiter le couple et la force

Information

Si vous utilisez un régulateur double axe avec deux axes planifiés, alors vous devez paramétrer séparément le modèle d'axe pour chaque axe.

7.2.5.1.1 Définir le modèle d'axe

- 1. Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Modèle d'axe.
- 3. I05 Type d'axe :

définissez le type d'axe, rotatoire ou translatoire.

- 3.1. Si vous souhaitez configurer séparément les unités de mesure et le nombre de décimales pour l'entrée et l'affichage des positions, des vitesses, des accélérations et de l'à-coup, sélectionnez 0: Réglage libre, rotorique ou 1: Réglage libre, translation.
- 3.2. Si vous souhaitez que les unités de mesure et le nombre de décimales pour l'entrée et l'affichage des positions, des vitesses, des accélérations et de l'à-coup soient prédéfinis, sélectionnez 2: Rotorique ou 3: Translation.
- B26 Encodeur moteur : définissez l'interface à laquelle l'encodeur moteur est raccordé.
- I02 Encodeur de position (en option) : définissez l'interface à laquelle l'encodeur de position est raccordé.
- I00 Plage de déplacement : définissez la plage de déplacement de l'axe limitée ou illimitée (modulo).

Information

Lorsque vous paramétrez 105 Type d'axe, vous pouvez soit configurer séparément les unités de mesure ainsi que le nombre de décimales pour le modèle d'axe via les sélections 0: Réglage libre, rotorique ou 1: Réglage libre, translation, soit avoir recours à des valeurs préréglées via les sélections 2: Rotorique et 3: Translation.

La sélection 0: Réglage libre, rotorique et la sélection 1: Réglage libre, translation vous permettent de configurer individuellement l'unité de mesure (I09) ainsi que les décimales (I06). Vitesse, Accélération et À-coup sont représentés comme un dérivé de l'unité de mesure par rapport au temps.

La sélection 2: Rotorique prédéfinit les unités de mesure suivantes pour le modèle d'axe : Position en °, Vitesse en tr/min, Accélération en rad/s², À-coup en rad/s³.

La sélection 3: Translation prédéfinit les unités de mesure suivantes pour le modèle d'axe : position en mm, vitesse en m/min, accélération en m/s², à-coup en m/s³.

Information

Si vous ne paramétrez rien d'autre pour I02 Encodeur de position, B26 Encodeur moteur est utilisé par défaut pour la régulation de position.

7.2.5.1.2 Ajuster l'axe

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Modèle d'axe > Axe : ajustage.
- Pour ajuster l'axe, configurez le rapport de transmission total entre le moteur et la sortie. Afin de vous faciliter l'ajustage, un calculateur d'ajustage Conversion positions, vitesses, accélérations, couple/force est disponible pour le calcul des répercussions des variables de mouvement modifiées sur tout le système.
- I01 Circonférence : si vous avez sélectionné pour I00 Plage de déplacement = 1: Infini, entrez la longueur circulaire.
- I06 Positions décimales (en option) : si vous avez sélectionné pour I05 Type d'axe= 0: Réglage libre, rotorique ou 1: Réglage libre, translation, spécifiez le nombre souhaité de décimales.
- I09 Unité de mesure (en option) : si vous avez sélectionné pour I05 Type d'axe = 0: Réglage libre, rotorique ou 1: Réglage libre, translation, spécifiez l'unité de mesure souhaitée.
- 7. I03 Polarité axe :

indiquez parallèlement avec la polarité le sens d'interprétation entre le mouvement de l'axe et le mouvement du moteur.

Information

Une modification du paramètre I06 entraîne un décalage des séparateurs décimaux de toutes les valeurs de position spécifiques à l'axe ! Définissez de préférence I06 avant de paramétrer d'autres valeurs de position et contrôlez-les ensuite.

Lorsque l'axe reçoit des consignes d'une commande ou suit les valeurs Maître, la résolution des valeurs de position a un impact direct sur le fonctionnement silencieux de l'axe. Définissez par conséquent un nombre suffisant de décimales en fonction de votre cas d'application.

Information

Le paramètre I297 Vitesse maximale l'encodeur de position doit être défini en conséquence dans votre application. Si le paramètre sélectionné I297 est trop petit, cela entraîne un dépassement de la vitesse maximale admissible, même avec des vitesses de fonctionnement normales. En revanche, si le paramètre sélectionné I297 est trop grand, des erreurs de mesure de l'encodeur pourront vous échapper.

I297 dépend des paramètres suivants : I05 Type d'axe, I06 Positions décimales, I09 Unité de mesure ainsi que I07 Facteur position numérateur et I08 Facteur position dénominateur ou A585 Feed constant pour CiA 402. Si vous avez modifié l'un des paramètres cités, sélectionnez également I297 en conséquence.

7.2.5.1.3 Paramétrer la fenêtre de position et de vitesse

Entrez les limites de position et les zones de vitesse pour les valeurs de consigne. Pour cela, paramétrez les valeurs générales qui s'appliquent pour atteindre une position ou une vitesse.

- 1. Sélectionnez l'assistant Modèle d'axe > Fenêtre position, vitesse.
- C40 Fenêtre vitesse : paramétrez une fenêtre de tolérance pour les vérifications de vitesse.
- I22 Fenêtre de position : paramétrez une fenêtre de tolérance pour les vérifications de position.
- I87 Position réelle dans la fenêtre temps : paramétrez la durée d'un entraînement dans la fenêtre de position prédéterminée avant l'émission d'un message d'état correspondant.
- I21 Erreur de poursuite maximale : paramétrez une fenêtre de tolérance pour les vérifications de l'écart de poursuite.

7.2.5.1.4 Limiter un axe

Vous avez l'option de limiter les variables de mouvement maximales admissibles que sont la position, la vitesse, l'accélération, l'à-coup ainsi que le couple/la force en fonction de votre cas d'application.

Information

Afin de vous faciliter l'ajustage ainsi que la limitation de l'axe, le calculateur d'ajustage **Conversion position, vitesses, accélérations, couple/force** est disponible dans l'assistant Modèle d'axe > Axe : ajustage pour le calcul des répercussions des variables de mouvement modifiées sur tout le système. Le calculateur d'ajustage permet de saisir des valeurs pour les variables de mouvement au niveau du moteur, de la sortie du réducteur et de l'axe, afin de convertir les valeurs en tous les autres points du modèle d'axe.

Limiter une position

Pour sécuriser la plage de déplacement de l'axe, vous pouvez optionnellement limiter les positions admissibles à l'aide d'une fin de course logicielle ou matérielle.

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Modèle d'axe > Limitation : position.
- 3. I101 Source positive /fin de course, I102 Source /fin de course positive négatif : pour limiter la plage de déplacement de l'axe à l'aide des fins de course matérielles, sélectionnez la source du signal numérique par lequel une fin de course est analysée à l'extrémité positive ou négative de la plage de déplacement.
 - 3.1. Si un bus de terrain sert de source, sélectionnez 2: Paramètre.
 - 3.2. Si une entrée numérique (directe ou inversée) sert de source, sélectionnez l'entrée correspondante.
- 4. I50 Fin de course positif logiciel, I51 Fin de course négatif logiciel : pour limiter la plage de déplacement de l'axe via les fins de course logicielles, définissez la position maximale ou minimale admissibles pour la limitation de position logicielle.
Limiter la vitesse, l'accélération et l'à-coup

Vous pouvez limiter optionnellement les variables de mouvement que sont la vitesse, l'accélération et l'à-coup et définissez la décélération d'arrêt rapide en fonction de votre cas d'application. Les valeurs par défaut sont conçues pour les vitesses lentes sans réducteur.

- 1. Sélectionnez l'assistant Moteur.
- B83 v-max moteur : déterminez la vitesse maximale admissible du moteur.
- 3. Sélectionnez l'assistant Modèle d'axe > Axe : ajustage.
- Zone Conversion positions, vitesses, accélérations, couple/force : à l'aide du calculateur d'ajustage, déterminez la vitesse maximale admissible de la sortie à partir de la vitesse maximale admissible du moteur.
- 5. Sélectionnez l'assistant Modèle d'axe > Limitation : vitesse, accélération, à-coup.
- I10 Vitesse maximale : définissez la vitesse maximale admissible de la sortie.
- I11 Accélération maximale : définissez l'accélération maximale admissible de la sortie.
- I16 À-coup maximale : définissez l'à-coup maximal admissible de la sortie.
- I17 Décélération de l'arrêt rapide : définissez la décélération d'arrêt rapide souhaitée pour la sortie.
- 10. Répétez les étapes pour l'axe B (seulement dans le cas de régulateurs double axe).

Limiter le couple/la force

Vous avez l'option de limiter le couple/la force en fonction de votre cas d'application. Les valeurs par défaut tiennent compte du fonctionnement nominal et des réserves de surcharge.

- 1. Sélectionnez l'assistant Modèle d'axe > Limitation : couple/force.
- 2. C03 Maximum positive couple/force, C05 Maximum négatif couple/force : définissez le couple de consigne maximal/la force de consigne maximale admissible.
- C08 Maximum couple/force arrêt rapide : définissez le couple de consigne maximal admissible/la force de consigne maximale admissible en cas d'arrêt rapide et en cas d'arrêt d'urgence basé sur l'entraînement SS1, SS1 et SS2.

7.2.6 Paramétrer la vitesse de rotation de référence

Paramétrez la grandeur de référence pour les vitesses de consigne et les vitesses réelles comme décrit ci-après afin de garantir le bon fonctionnement de l'application. Dans le cas d'une commande en combinaison avec le télégramme 111, la grandeur de référence n'est pas analysée, le paramétrage n'a pas lieu en conséquence.

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- Sélectionnez l'assistant Application PROFIdrive > Fonctions additionnelles > Données de l'entraînement.
- Vitesse de rotation de référence : définissez la grandeur de référence pour les vitesses de consigne et réelles.
- 4. Répétez les étapes pour l'axe B (seulement dans le cas de régulateurs double axe).

Limiter la vitesse, l'accélération et l'à-coup

Vous pouvez limiter optionnellement les variables de mouvement que sont la vitesse, l'accélération et l'à-coup et définissez la décélération d'arrêt rapide en fonction de votre cas d'application. Les valeurs par défaut sont conçues pour les vitesses lentes sans réducteur.

- 1. Sélectionnez l'assistant Moteur.
- B83 v-max moteur : déterminez la vitesse maximale admissible du moteur.
- 3. Sélectionnez l'assistant Modèle d'axe > Axe : ajustage.
- Zone Conversion positions, vitesses, accélérations, couple/force : à l'aide du calculateur d'ajustage, déterminez la vitesse maximale admissible de la sortie à partir de la vitesse maximale admissible du moteur.
- 5. Sélectionnez l'assistant Modèle d'axe > Limitation : vitesse, accélération, à-coup.
- 6. I10 Vitesse maximale : définissez la vitesse maximale admissible de la sortie.
- I11 Accélération maximale : définissez l'accélération maximale admissible de la sortie.
- I16 À-coup maximale : définissez l'à-coup maximal admissible de la sortie.
- I17 Décélération de l'arrêt rapide : définissez la décélération d'arrêt rapide souhaitée pour la sortie.
- 10. Répétez les étapes pour l'axe B (seulement dans le cas de régulateurs double axe).

Information

Tenez compte des unités partiellement différentes côté servo-variateur et côté commande lorsque vous réglez les paramètres correspondants côté commande pendant la mise en service dans le TIA Portal.

Paramètre DriveControlSuite	Condition	Paramètre TIA Portal
M571 Velocity reference value (vitesse de rotation de référence en unité utilisateur)	=	Vitesse de rotation de référence
Couple de référence (C09 × 2,5)	=	Couple de référence
I10 Vitesse maximale	≥	Vitesse maximale admissible
I11 Accélération maximale	2	Accélération/décélération maximale admissible
I16 À-coup maximale	≥	À-coup maximal admissible
I17 Décélération de l'arrêt rapide	≥	Décélération d'arrêt d'urgence

Tab. 9: Limitations : paramètres nécessaires du côté servo-variateur et du côté commande

7.2.7 Transférer et enregistrer la configuration

Pour transférer la configuration vers un ou plusieurs servo-variateurs et l'enregistrer, vous devez connecter votre ordinateur personnel aux servo-variateurs via le réseau.

AVERTISSEMENT !

Dommages corporels et matériels dus au mouvement de l'axe !

Si une connexion en ligne entre DriveControlSuite et le servo-variateur existe, des modifications de la configuration peuvent entraîner des mouvements de l'axe inattendus.

- Ne modifiez la configuration que si vous avez un contact visuel avec l'axe.
- Assurez-vous qu'aucune personne et qu'aucun objet ne se trouve dans la plage de déplacement.
- Pour l'accès par télémaintenance, un lien de communication entre vous et une personne sur place avec un contact visuel avec l'axe doit être établi.

Information

Lors de la recherche, tous les servo-variateurs à l'intérieur du domaine de diffusion sont localisés via la diffusion IPv4-Limited.

Conditions préalables à la localisation d'un servo-variateur dans le réseau :

- Le réseau prend en charge la diffusion IPv4-Limited
- Tous les servo-variateurs et l'ordinateur personnel sont dans le même sousréseau (domaine de diffusion)
- ✓ Les servo-variateurs sont en marche et sont trouvables dans le réseau.
- 1. Dans l'arborescence de projet, marquez le module sous lequel vous avez saisi votre servovariateur et cliquez dans le menu de projet sur Liaison en ligne.
 - ⇒ La boîte de dialogue Ajouter une liaison s'ouvre. Tous les servo-variateurs détectés via la diffusion IPv4-Limited s'affichent.
- Onglet Liaison directe, colonne Adresse IP : activez les adresses IP concernées et cliquez sur OK pour confirmer votre sélection.
 - ⇒ La fenêtre Fonctions en ligne s'ouvre. Tous les servo-variateurs connectés via les adresses IP sélectionnées s'affichent.
- Sélectionnez le module et le servo-variateur vers lequel vous souhaitez transférer une configuration. Modifiez la sélection du mode de transfert de Lire à Envoyer.
- 4. Modifiez la sélection Créer un nouveau servo-variateur : sélectionnez la configuration que vous souhaitez transférer vers le servo-variateur.
- 5. Répétez les étapes 3 et 4 pour tous les autres servo-variateurs vers lesquels vous souhaitez transférer une configuration.
- Onglet En ligne : cliquez sur Établir des liaisons en ligne.
- ⇒ Les configurations sont transférées vers les servo-variateurs.

Enregistrer la configuration

- ✓ Vous avez transféré la configuration avec succès.
- Fenêtre Fonctions en ligne, onglet En ligne, zone Actions pour les servo-variateurs en mode en ligne :

cliquez sur Enregistrer les valeurs (A00).

- ⇒ La fenêtre Enregistrer les valeurs (A00) s'ouvre.
- 2. Sélectionnez les servo-variateurs sur lesquels vous souhaitez enregistrer la configuration.
- 3. Cliquez sur Démarrer l'action.
 - ⇒ La configuration est enregistrée de manière non volatile sur les servo-variateurs.
- 4. Fermez la fenêtre Enregistrer les valeurs (A00).

Information

Pour que la configuration prenne effet sur le servo-variateur, un redémarrage est nécessaire, par exemple après le premier enregistrement de la configuration sur le servo-variateur ou en cas de modifications du micrologiciel ou du mappage des données process.

Redémarrer le servo-variateur

- ✓ Vous avez enregistré la configuration de manière non volatile sur le servo-variateur.
- Fenêtre Fonctions en ligne, onglet En ligne : cliquez sur Redémarrer (A09).
 - ⇒ La fenêtre Redémarrer (A09) s'ouvre.
- 2. Sélectionnez les servo-variateurs connectés que vous souhaitez redémarrer.
- 3. Cliquez sur Démarrer l'action.
- 4. Cliquez sur OK pour confirmer la consigne de sécurité.

⇒ La fenêtre Redémarrer (A09) se ferme.

- ⇒ La communication par bus de terrain et la liaison entre DriveControlSuite et les servo-variateurs sont interrompues.
- ⇒ Les servo-variateurs sélectionnés redémarrent.

7.2.8 Tester la configuration

Après avoir transféré la configuration vers le servo-variateur, vérifiez d'abord la plausibilité de votre modèle d'axe planifié ainsi que des données électriques et mécaniques paramétrées avant de poursuivre le paramétrage.

Testez la configuration lors d'une commande en combinaison avec le télégramme 111. Cette étape est facultative pour tous les autres télégrammes.

Information

Assurez-vous que les valeurs du panneau de commande sont compatibles avec le modèle d'axe planifié afin d'obtenir des résultats de test viables qui vous permettront d'optimiser votre configuration pour l'axe concerné.

L'assistant Modèle d'axe > Axe : ajustage comporte le calculateur d'ajustage pour la conversion des valeurs du panneau de commande conformément à votre modèle d'axe planifié.

AVERTISSEMENT !

Dommages corporels et matériels dus au mouvement de l'axe !

En activant le panneau de commande, vous exercez un contrôle exclusif sur les mouvements de l'axe grâce à DriveControlSuite. Si vous utilisez une commande, l'activation du panneau de commande entraîne la fin de la surveillance des mouvements de l'axe par la commande. La commande ne peut pas intervenir pour empêcher des collisions. En désactivant le panneau de commande, la commande reprend le contrôle et des mouvements de l'axe inattendus sont possibles.

- Ne passez pas à d'autres fenêtres lorsque le panneau de commande est actif.
- N'utilisez le panneau de commande que si vous avez un contact visuel avec l'axe.
- Assurez-vous qu'aucune personne ou qu'aucun objet ne se trouve dans la plage de déplacement.
- Pour l'accès par télémaintenance, un lien de communication entre vous et une personne sur place avec un contact visuel avec l'axe doit être établi.

Tester la configuration via le panneau de commande Pas à pas

- ✓ Une liaison en ligne est établie entre DriveControlSuite et le servo-variateur.
- ✓ Vous avez bien enregistré la configuration sur le servo-variateur.
- ✓ Aucune fonction de sécurité n'est active.
- 1. Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Panneau de commande Pas à pas.
- 3. Cliquez sur Panneau de commande Marche et ensuite sur Autorisation.
 - \Rightarrow L'axe est contrôlé via le panneau de commande actif.
- 4. Vérifiez les valeurs par défaut du panneau de commande et, si nécessaire, adaptez-les à votre modèle d'axe planifié.
- Pour vérifier les points Direction de mouvement, Vitesse etc. de la configuration de votre axe planifié, déplacez progressivement l'axe à l'aide des boutons Pas+, Pas-, Pas à pas Step+ et Pas à pas Step-.
- 6. Utilisez les résultats du test pour optimiser votre configuration le cas échéant.
- 7. Pour désactiver le panneau de commande, cliquez sur Panneau de commande arrêt.

Information

Les boutons Tip+ et Tip- permettent d'effectuer un déplacement manuel continu dans les directions positive ou négative. Pas à pas step + et Pas à pas step déplacent l'axe de l'incrément indiqué dans I14 par rapport à la position réelle actuelle.

Les boutons Pas à pas + et Pas à pas - sont dotés d'une priorité supérieure à celle de Pas à pas step + et Pas à pas step -.

7.3 TIA Portal : configurer le réseau PROFINET

Un réseau PROFINET est généralement composé d'une commande (IO-Controller) et de plusieurs servo-variateurs (IO-Devices). À l'aide du TIA Portal, reproduisez votre réseau PROFINET réel dans un projet TIA, configurez tous les participants PROFINET et reliez-les logiquement les uns aux autres. Transférez ensuite la configuration vers la commande et vérifiez la communication cyclique.

Information

Exécutez impérativement les étapes mentionnées ci-après dans l'ordre indiqué !

Certains paramètres sont dépendants les uns des autres et ne sont accessibles que si vous avez procédé auparavant à certains réglages. Suivez les étapes dans l'ordre prescrit afin de pouvoir finaliser intégralement le paramétrage.

7.3.1 Installer un fichier GSD

Pour pouvoir reproduire les servo-variateurs Pilz de votre réseau PROFINET dans votre projet TIA, vous devez importer et installer un fichier GSD (fichier de données de base de l'appareil) de Pilz dans votre projet TIA. Les servo-variateurs Pilz sont disponibles dans le catalogue du matériel de votre projet TIA en tant qu'appareils de terrain STOBER une fois le fichier GSD installé.

Information

Si vous avez déjà téléchargé antérieurement un fichier GSD depuis la zone de téléchargement Pilz, assurez-vous de posséder la version actuelle du fichier GSD nécessaire.

- ✓ Vous avez téléchargé la version actuelle du fichier GSD depuis la zone de téléchargement Pilz et vous l'avez enregistrée localement.
- ✓ Vous avez créé un projet TIA et vous vous trouvez dans la vue du projet TIA.
- Dans la barre de menus, sélectionnez Outils > Gérer les fichiers de description des appareils (GSD).

⇒ La fenêtre Gérer les fichiers de description de l'appareil s'ouvre.

- Onglet Fichiers GSD installés > Zone Chemin d'accès source : sélectionnez le répertoire dans lequel vous avez stocké le fichier GSD Pilz et confirmez par OK.
 - ⇒ Le fichier GSD s'affiche dans le volet Contenu du chemin d'accès importé.
- Volet Contenu du chemin d'accès importé : sélectionnez le fichier GSD souhaité et cliquez sur Installer.
- ⇒ L'installation du fichier GSD démarre ; les servo-variateurs Pilz sont disponibles dans le catalogue du matériel.

7.3.2 Planifier le réseau PROFINET

Reproduisez la commande ainsi que tous les servo-variateurs de votre réseau PROFINET dans un projet TIA. Pour cela, sélectionnez les modules correspondants dans le catalogue du matériel et intégrez-les au projet.

7.3.2.1 Planifier la commande

Planifiez la commande de votre réseau PROFINET.

- ✓ Vous avez créé un projet TIA et installé le fichier GSD à partir de Pilz.
- ✓ Vous êtes dans la vue du réseau TIA ; le catalogue du matériel est ouvert.
- Catalogue du matériel : sélectionnez Controller > SIMATIC S7-1500 > CPU et ouvrez le dossier du type CPU auquel appartient votre commande.
- 2. Glissez-déposez la commande souhaitée dans la vue du réseau.
- ⇒ La commande est intégrée dans votre projet TIA.

7.3.2.2 Planifier un servo-variateur

Planifiez tous les servo-variateurs de votre réseau PROFINET.

- ✓ Vous avez créé un projet TIA et installé le fichier GSD à partir de Pilz.
- ✓ Vous êtes dans la vue du réseau TIA ; le catalogue du matériel est ouvert.
- 1. Catalogue du matériel :

sélectionnez Autres appareils de terrain > PROFINET IO > Drives > STOBER ANTRIEBSTECHNIK GmbH & Co. KG > STOBER ANTRIEBSTECHNIK > Servo-variateurs STOBER 6e génération > Régulateurs double axe SI6, SC6 + PD3 ou Régulateurs mono-axe SI6, SC6 + PD3.

2. Glissez-déposez le servo-variateur souhaité dans la vue du réseau.

⇒ Le servo-variateur est intégré dans votre projet TIA.

3. Répétez les étapes 1 et 2 pour tous les servo-variateurs de votre réseau PROFINET.

Information

Pour pouvoir planifier le module de sécurité et utiliser PROFIsafe, vous devez planifier un servo-variateur compatible PROFIsafe. Vous reconnaîtrez un servo-variateur compatible PROFIsafe dans le catalogue du matériel à la mention additionnelle + **PROFIsafe** ou + **PS** dans le nom de l'appareil.

7.3.2.3 Relier logiquement la commande et les servo-variateurs

Reliez logiquement la commande et les servo-variateurs afin de permettre la communication entre les appareils.

- ✓ Vous avez planifié la commande et les servo-variateurs.
- ✓ Vous êtes dans la vue du réseau TIA.
- 1. Cliquez sur l'interface de la commande et glissez une connexion sur l'interface du premier servovariateur en maintenant le bouton de la souris enfoncé.
- 2. Répétez cette procédure pour tous les servo-variateurs de votre réseau PROFINET.
- ⇒ La commande et les servo-variateurs de votre réseau PROFINET sont reliés logiquement les uns aux autres.

Information

Pour pouvoir relier logiquement la commande et les servo-variateurs, vous devez vous trouver dans la vue du réseau TIA.

7.3.2.4 Câblage des ports

Vous devez câbler les ports de tous les participants si vous souhaitez réaliser une commande dans la classe d'application 4. Cette étape est facultative pour les autres classes d'application.

Pour que PROFIdrive puisse être exploité dans la classe d'application 4, PROFINET doit fonctionner en mode isochrone. Pour le fonctionnement en mode isochrone via PROFINET IRT, vous devez impérativement spécifier dans la topologie de connexion le mode d'interconnexion de tous les participants PROFINET. Pour cela, indiquez dans la vue topologique la connexion de chaque câble d'un appareil à l'autre, au port près.

- ✓ Vous avez relié logiquement la commande et le servo-variateur.
- ✓ Vous êtes dans la vue topologique TIA.
- 1. Cliquez sur le port à câbler et faites-le glisser sur le port cible en maintenant le bouton de la souris enfoncé.
- 2. Répétez cette procédure pour tous les ports à câbler de votre réseau PROFINET.
- ⇒ Vous avez créé les câblages de ports.

Information

Si la liaison en ligne est établie, vous pouvez comparer les câblages créés avec vos connexions câblées réelles. Pour plus d'informations sur la comparaison de topologie, reportez-vous à la documentation Siemens ou à l'aide en ligne du TIA Portal.

7.3.3 Configurer les adresses de réseau

Si nécessaire, vous pouvez modifier l'adresse IP et le masque de sous-réseau de la commande.

- ✓ Vous êtes dans la vue du réseau TIA.
- 1. Double-cliquez sur la commande de votre réseau PROFINET.
 - ⇒ Vous passez à la vue des appareils correspondante ; la fenêtre d'inspection affiche les propriétés de l'appareil.
- Fenêtre d'inspection > Onglet Général : dans le navigateur de zone, sélectionnez Interface PROFINET > Adresses Ethernet.
- Zone Protocole IP > Définir l'adresse IP dans le projet : si cette fonction n'est pas préréglée, activez cette option et changez l'adresse IP et le masque de sous-réseau de la commande.
- ⇒ L'adresse IP et le masque de sous-réseau de la commande sont configurés.

7.3.4 Configurer le servo-variateur

Attribuez un nom d'appareil aux servo-variateurs de votre projet TIA afin de rendre possible l'identification dans le réseau PROFINET. Planifiez un télégramme pour chaque axe et procédez ensuite, le cas échéant, aux réglages de synchronisation.

7.3.4.1 Attribuer un nom d'appareil

Attribuez un nom d'appareil à vos servo-variateurs afin de rendre possible l'identification dans le réseau PROFINET.

- ✓ Vous êtes dans la vue du réseau TIA.
- 1. Double-cliquez sur un servo-variateur de votre réseau PROFINET.
 - ⇒ Vous passez à la vue des appareils correspondante ; la fenêtre d'inspection affiche les propriétés de l'appareil.
- Fenêtre d'inspection > Onglet Général : dans le navigateur de zone, sélectionnez Général.
- 3. Nom :

attribuez au servo-variateur un nom d'appareil qui répond aux conventions de dénomination PROFINET.

 Vue des appareils : marquez le servo-variateur concerné et sélectionnez Affecter un nom d'appareil via son menu contextuel.

⇒ La fenêtre Affecter un nom d'appareil PROFINET s'ouvre.

- 5. Cliquez sur Actualiser la liste.
 - \Rightarrow La liste de tous les servo-variateurs trouvés dans le sous-réseau s'affiche.
 - ⇒ Le type d'appareil, l'adresse IP et l'adresse MAC s'affichent pour chaque servo-variateur.
- 6. Marquez le servo-variateur que vous souhaitez nommer et cliquez sur Affecter un nom.
- ⇒ Le nom de l'appareil est affecté au servo-variateur sélectionné.

Information

Vous pouvez également entrer le nom de l'appareil dans les paramètres A273[3] à [5] de DriveControlSuite. Ainsi, les étapes 4 à 6 pour l'affectation du nom de l'appareil ne sont plus nécessaires dans le TIA Portal.

Information

Via Clignotement DEL, vous pouvez identifier le servo-variateur actuellement sélectionné si plusieurs servo-variateurs ont été trouvés dans le même sous-réseau.

Sinon, vous pouvez également identifier le servo-variateur grâce à l'adresse MAC. Vous pouvez lire l'adresse MAC du servo-variateur dans DriveControlSuite dans le paramètre A279 PN MAC adresses (assistant PROFINET > Diagnostic).

7.3.4.2 Planifier le télégramme

Planifiez un télégramme par axe.

Information

Pour les régulateurs double axe, tenez compte du fait qu'un mode mixte des procédés de transfert PROFINET RT et PROFINET IRT n'est pas possible. Par exemple, si vous planifiez le télégramme par défaut 1 dans AC1 pour l'axe A et le télégramme par défaut 5 dans AC4 pour l'axe B, le télégramme par défaut 1 est ignoré.

- ✓ Vous êtes dans la vue du réseau TIA ; le catalogue du matériel est ouvert.
- 1. Double-cliquez sur un servo-variateur de votre réseau PROFINET.
 - ⇒ Vous passez à la vue des appareils correspondante.
- Catalogue du matériel : sélectionnez Module > PROFIdrive module.
- 3. Glissez-déposez le module PROFIdrive Module sur l'emplacement 1 dans l'aperçu de l'appareil du servo-variateur.
- Catalogue du matériel : sélectionnez Module > Sous-modules.
- 5. Sélectionnez un télégramme.
- 6. Glissez-déposez le télégramme sélectionné sur l'emplacement 1 2 dans l'aperçu de l'appareil du servo-variateur.
- 7. Si vous souhaitez utiliser un télégramme additionnel, sélectionnez-le dans le catalogue du matériel.
- 8. Glissez-déposez le télégramme additionnel sélectionné sur l'emplacement 1 3 dans l'aperçu de l'appareil du servo-variateur.
- Si vous utilisez un régulateur double axe, répétez les étapes 2 à 8 pour le deuxième axe et pour les emplacements 2, 2 2 et 2 3. Planifiez un télégramme pour le deuxième axe même si vous ne l'utilisez pas.
- ⇒ Vous avez planifié les télégrammes.

Information

Lorsque vous planifiez le télégramme additionnel 900, définissez dans DriveControlSuite les données process additionnelles à transférer vers la commande, en utilisant les paramètres A92 (RxPZD) et A96 (TxPZD). Les éléments [0] à [11] servent aux paramètres de l'axe A, les éléments [12] à [23] aux paramètres de l'axe B. Une longueur de données de 12 octets est disponible pour les données process de réception et d'émission.

7.3.4.3 Réglage isochrone du servo-variateur

Procédez aux réglages suivants pour l'isochronisme via PROFINET IRT, dans la mesure où vous souhaitez réaliser une commande dans la classe d'application 4. Cette étape n'est pas nécessaire pour les autres classes d'applications.

- ✓ Vous êtes dans la vue du réseau TIA.
- 1. Double-cliquez sur un servo-variateur de votre réseau PROFINET.
 - ➡ Vous passez à la vue des appareils correspondante ; la fenêtre d'inspection affiche les propriétés de l'appareil.
- Fenêtre d'inspection > Onglet Généralités : sélectionnez dans le navigateur de zone Interface PROFINET > Options avancées > Isochronisme.
- Zone Isochronisme pour modules locaux > Isochronisme : activez l'option.
- Zone Vue d'ensemble détaillée : dans la colonne Isochronisme, activez le sous-module avec le télégramme inséré afin d'affecter au télégramme le mode isochrone.
- 5. S'il s'agit d'un régulateur double axe, activez le 2e sous-module avec le télégramme inséré.
 - ⇒ Les temps sont recalculés et saisis dans la zone lsochronisme pour modules locaux, la cadence d'émission est appliquée depuis le fichier GSD.
- ⇒ Vous avez configuré le servo-variateur pour le mode isochrone.

7.3.5 Configurer la commande

Configurez ensuite la commande de l'application en fonction de votre cas d'application à l'aide d'objets technologiques ou de blocs fonctionnels.

Vous trouverez de plus amples informations sur la configuration de la commande ainsi que sur les objets technologiques et les blocs fonctionnels dans le manuel d'application correspondant PROFIdrive (voir Informations complémentaires [10]79]).

7.3.6 Transférer la configuration

Transférez la configuration de votre projet TIA de votre ordinateur vers la commande.

- ✓ Vous avez reproduit et paramétré entièrement votre réseau PROFINET dans votre projet TIA.
- Navigateur du projet > Onglet Appareils : sélectionnez le dossier de la commande concernée.
- 2. Dans la barre de menus, sélectionnez En ligne > Chargement avancé dans l'appareil.

⇒ La fenêtre Chargement avancé s'ouvre.

- Volet Sélectionner appareil cible : sélectionnez Afficher tous les participants compatibles et cliquez sur Lancer la recherche.
 - \Rightarrow La liste de toutes les commandes trouvées dans le sous-réseau s'affiche.
- 4. Sélectionnez la commande vers laquelle vous souhaitez transférer la configuration et cliquez sur Charger.

⇒ La fenêtre Synchronisation du logiciel avant le chargement dans un appareil s'ouvre.

5. Cliquez sur Continuer sans synchronisation.

⇒ La fenêtre Prévisualisation chargement s'ouvre.

- 6. Cliquez sur Charger.
 - ⇒ La configuration est transférée vers la commande sélectionnée et la fenêtre Résultats du processus de chargement s'ouvre.
- 7. Cliquez sur Terminer.
- ⇒ Le processus de chargement va être terminé : la configuration a été transférée vers la commande.

Information

Lorsque la liaison est établie vous pouvez identifier, grâce à Clignotement DEL, la commande actuellement sélectionnée si plusieurs commandes ont été trouvées dans le même sous-réseau.

Information

Dans DriveControlSuite, le paramètre A271 livre des informations sur l'état du servovariateur dans le réseau PROFINET. Si l'application sélectionnée dans DriveControlSuite ne correspond pas au module inséré dans le TIA Portal, l'état 6: Configuration Application / PROFINE difference y est affiché.

 Dans ce cas, assurez-vous que la commande de l'appareil et l'application PROFIdrive sont planifiées dans DriveControlSuite et qu'un module PROFIdrive a été inséré dans le TIA Portal.

Information

Le paramètre A272 dans DriveControlSuite fournit des informations sur les sousmodules planifiés dans le TIA Portal (format d'affichage : XXX YYY ZZZ ; XXX = n° ID du sous-module (n° de télégramme), YYY = longueur de données TxPZD en octets, ZZZ = longueur de données RxPZD en octets).

7.3.7 Vérifier la communication

Vérifiez la communication entre la commande et les servo-variateurs de votre réseau PROFINET à l'aide du tampon de diagnostic de la commande.

- ✓ Vous avez transféré la configuration vers la commande.
- Navigateur du projet > Onglet Appareils : ouvrez le dossier de la commande concernée.
- 2. Double-cliquez sur En ligne & Diagnostic.

⇒ Vous passez à la vue des appareils correspondante.

- 3. Sélectionnez Accès en ligne dans le navigateur de zone.
- Zone Accès en ligne : cliquez sur Établir une liaison en ligne.

⇒ Une liaison en ligne vers la commande sélectionnée va être établie.

- 5. Dans le navigateur de zone, sélectionnez Diagnostic > Tampon de diagnostic.
- Volet Événements : vérifiez la présence éventuelle d'erreurs dans les événements du tampon de diagnostic et éliminez-en les causes le cas échéant.
- ⇒ La liaison entre la commande et les servo-variateurs est planifiée et un échange de données est possible entre les participants au réseau PROFINET.

Information

Lorsque la liaison est établie vous pouvez identifier, grâce à Clignotement DEL, la commande actuellement sélectionnée si plusieurs commandes ont été trouvées dans le même sous-réseau.

8 Surveillance et diagnostic

À des fins de surveillance et en cas de dérangement, vous pouvez opter pour une des possibilités de surveillance et de diagnostic décrites ci-après.

8.1 Surveillance de la connexion

Pour éviter une réaction intempestive de l'entraînement en cas d'interruption d'une connexion PROFINET (rupture de câble, etc.), nous recommandons de surveiller l'entrée des données process cycliques.

Pour la surveillance de la connexion, PROFINET prévoit le temps du chien de garde (TIA Portal : temps de surveillance de réponse) qui, en combinaison avec le temps de cycle (TIA Portal : temps d'actualisation), définit ce que l'on appelle le cycle IO dans la commande (IO-Controller).

Le temps de cycle détermine l'intervalle dans lequel les données sont transférées de la commande vers le servo-variateur concerné (IO-Device) et vice versa. Il dépend, entre autres, du volume des données à transférer et est en général automatiquement calculé dans le TIA Portal pour chaque servo-variateur.

Le temps du chien de garde correspond au nombre de cycles autorisés sans transfert de données. Outre le temps du chien de garde de la commande, vous pouvez activer le paramètre A109 PZD-Timeout dans DriveControlSuite. Une fois le temps du chien de garde planifié pour la commande écoulé, la temporisation PZD agit également dans le micrologiciel du servo-variateur.

Fig. 6: PROFINET : surveillance de la connexion

Le temps du chien de garde configuré s'écoule dès que survient une erreur, suivi de la temporisation paramétrée dans A109. Si la temporisation est également écoulée, le servo-variateur passe à l'état **Dérangement** avec l'événement 52 correspondant : Communication, cause 4: PZD-Timeout.

8.2 Affichage DEL

Les servo-variateurs sont équipés de DEL de diagnostic qui visualisent l'état de la communication par bus de terrain ainsi que les états de la connexion physique.

8.2.1 État PROFINET

Deux diodes électroluminescentes situées sur la face avant du servo-variateur informent de l'état de la connexion entre la commande et le servo-variateur ainsi que de l'état de l'échange de données. Celui-ci peut être également consulté dans le paramètre A271 PN État.

Fig. 7: Diodes électroluminescentes indiquant l'état PROFINET

- 1 Rouge : EB (erreur du bus)
- 2 Verte : Run

DEL rouge	Comportement	Description
	Éteinte	Aucune erreur
111111111111111	Clignotement rapide	Échange de données inactif avec commande
	Allumée	Aucune connexion au réseau

Tab. 10: Signification des DEL rouges (BF)

DEL verte	Comportement	Description
	Éteinte	Aucune connexion
	Flash simple	Connexion à la commande en cours
	Flash simple, inverse	La commande active le service de signal DHCP
	Clignotement	Connexion à la commande établie ; en attente de l'échange de données
	Allumée	Connexion à la commande établie

Tab. 11: Signification de la DEL verte (Run)

8.2.2 Connexion au réseau PROFINET

Les diodes électroluminescentes Act et Link sur les bornes X200 et X201 sur le dessus de l'appareil indiquent l'état de la connexion réseau PROFINET.

Fig. 8: Diodes électroluminescentes indiquant l'état de la connexion au réseau PROFINET

- 1 Vert : Link sur X201
- 2 Jaune : Activity sur X201
- 3 Vert : Link sur X200
- 4 Jaune : Activity sur X200

DEL verte	Comportement	Description
	Éteinte	Aucune connexion au réseau
	Allumée	Connexion réseau établie

Tab. 12: Signification des DEL vertes (Link)

DEL jaune	Comportement	Description
	Éteinte	Aucun échange de données
	Clignotement	Échange de données actif avec commande

Tab. 13: Signification des DEL jaunes (Act)

8.3 Événements

Le servo-variateur est équipé d'un système d'auto-surveillance qui protège le système d'entraînement de dommages grâce à des règles de contrôle. La violation des règles de contrôle déclenche un événement correspondant. En qualité d'utilisateur, vous n'avez aucune influence sur certains événements, comme par exemple un Court-circuit/mise à la terre. En revanche, vous pouvez influencer les incidences et les réactions d'autres événements.

Incidences possibles :

- Message : information pouvant être analysée par la commande
- Avertissement : information pouvant être analysée par la commande et qui se transforme en dérangement au bout d'une période définie si la cause n'a pas été éliminée
- Dérangement : réaction immédiate du servo-variateur ; le bloc de puissance est bloqué et le mouvement de l'axe n'est plus contrôlé par le servo-variateur ou l'axe est immobilisé à la suite d'un arrêt rapide ou d'un freinage d'urgence

En fonction de l'événement, il existe différentes mesures que vous pouvez prendre pour en éliminer la cause. Une fois la cause éliminée, vous pouvez en général acquitter directement l'événement. Si un redémarrage du servo-variateur s'impose, vous trouverez une indication correspondante dans les actions à prendre.

PRUDENCE

Dommage matériel dû à l'interruption de l'arrêt rapide ou au freinage d'urgence !

Si un dérangement survient pendant l'exécution d'un arrêt rapide ou pendant un freinage d'urgence, ou si STO est activée, l'arrêt rapide ou le freinage d'urgence sont interrompus. Dans ce cas, il y a risque d'endommagement de la machine dû à un mouvement incontrôlé de l'axe.

Information

Pour faciliter aux programmeurs de systèmes de commande la configuration de l'interface utilisateur (IHM), vous pouvez contacter le support technique Pilz à l'adresse support@pilz.com pour obtenir une liste des événements et de leurs causes.

8.3.1 Événement 52 : Communication

Le servo-variateur passe à l'état en dérangement :

A29 = 0: Inactif s'il s'agit d'une commande de l'appareil Drive Based ou PROFIdrive

Réaction :

- Le bloc de puissance est verrouillé et le servo-variateur ne contrôle plus le mouvement de l'axe
- Les freins se bloquent

Le servo-variateur bascule en dérangement à la suite d'un arrêt rapide si :

A29 = 1: Actif s'il s'agit d'une commande de l'appareil Drive Based ou PROFIdrive

Réaction :

- L'axe est stoppé par un arrêt rapide
- > Pendant l'arrêt rapide, les freins restent débloqués
- À la fin de l'arrêt rapide, le bloc de puissance est verrouillé et le servo-variateur ne contrôle plus le mouvement de l'axe
- Les freins se bloquent

Information

Dans les états Mise en marche désactivée, Prêt à la mise sous tension et En marche (E48), un flanc montant est attendu pour le signal Commande prioritaire de déblocage (source : F06), afin que le frein soit débloqué.

Cause		Contrôle et mesure
4: PZD-Timeout	Données process manquantes	Vérifiez le temps de cycle dans la commande et la durée de défaillance tolérée pour la surveillance de la communication des données process dans le servo-variateur et corrigez-les si nécessaire (A109)
14: Mappage paramètres PZD erroné	Erreur de mappage	Vérifiez le mappage sur les paramètres non reproductibles et corrigez-le si nécessaire
15: Mauvais firmware pour l'application	L'identifiant de bus de terrain planifié et celui du servo-variateur ne concordent pas	Vérifiez l'identifiant de bus de terrain planifié et l'identifiant du servo- variateur et remplacez le bus de terrain, le cas échéant (E59[2], E52[3])
16: Échec de la synchronisation PROFINET Sign-of-Life	Erreur de synchronisation	Tenez compte des remarques dans le TIA Portal et actualisez le fichier GSD si nécessaire ; vérifiez l'isochronisme de la commande ou de l'objet technologique et corrigez-le si nécessaire

Tab. 14: Événement 52 – Causes et mesures

8.4 Paramètres

Les paramètres de diagnostic suivants sont disponibles lors de la communication PROFINET en combinaison avec les servo-variateurs de la gamme PMC SC6 ou PMC SI6.

8.4.1 A270 | X20x État | G6 | V0

État de la connexion réseau (bus de terrain).

- ▶ [0]: X200
 - 0: Erreur
 - 1: Pas de liaison Aucun câble réseau branché
 - 2: 10 MBit/s Connexion active ; taux de transmission 10 Mbit/s
 - 3: 100 MBit/s Connexion active ; taux de transmission 100 Mbit/s, semi-duplex
 - 4: Liaison OK Connexion active ; taux de transmission 100 Mbit/s, duplex intégral
- [1]: X201 Voir [0]: X200

8.4.2 A271 | PN État | G6 | V0

État du servo-variateur dans le réseau PROFINET.

- 0: Hors ligne Matériel non opérationnel
- 1: Étape 1 Matériel opérationnel ; aucune connexion au IO-Controller
- 2: Étape 2
 Adresse IP reçue ; connexion au IO-Controller en cours
- 3: Phase 1
 Le servo-variateur est configuré par le IO-Controller
- 4: Phase 2
 Démarrage de l'IO-Controller et du servo-variateur terminé ; la communication par données process démarre
- 5: Échange cyclique de données
 Communication par données process active
- 6: Configuration Application / PROFINE difference Configuration du servo-variateur (application planifiée) et configuration de l'IO-Controller (modules planifiés) conflictuelles ; vérifiez si l'application sélectionnée dans DriveControlSuite est adaptée au module inséré dans le TIA Portal.

8.4.3 A272 | PN module/submodule | G6 | V1

Affichage des numéros d'identification et des longueurs de données des sous-modules dans le réseau PROFINET (source : IO-Controller ; format d'affichage : XXX YYY ZZZ ; XXX = n° ID du sous-module (n° de télégramme), YYY = longueur de données TxPZD en octets, ZZZ = longueur de données RxPZD en octets).

▶ [0] – [4] : affichage des sous-modules

L'affectation des éléments découle du type de servo-variateur et de la configuration dans la commande. Il n'existe pas d'affectation fixe de sous-modules aux éléments de paramètres. Dans le cas de régulateurs mono-axe, seul l'élément [0] est généralement décrit, étant donné qu'un emplacement pour un sous-module est disponible côté commande pour les régulateurs mono-axe. Pour les régulateurs double axe avec deux emplacements, les éléments [0] et [1] sont généralement décrits. Si le servo-variateur est équipé du module de sécurité PMC SU6 pour PROFIsafe, l'élément ci-dessous contient l'information sur le module de sécurité. Dans le cas de l'application PROFIdrive, un deuxième sous-module peut être configuré pour chaque axe pour un télégramme additionnel. Il s'affiche après le sous-module pour le télégramme.

Exemple de régulateur double axe avec application PROFIdrive et module de sécurité PROFIsafe :

- ▶ [0] : télégramme axe A
- ▶ [1] : télégramme additionnel axe A
- ▶ [2] : télégramme axe B
- ▶ [3] : télégramme additionnel axe B
- ▶ [4] : PROFIsafe
- [0] : régulateur mono-axe, régulateur double axe axe A
- ▶ [1] : régulateur double axe axe B

8.4.4 A273 | PN nom de l'appareil | G6 | V0

Nom d'appareil du servo-variateur (IO-Device) dans le réseau PROFINET (source : IO-Controller).

- [0] [2] : nom d'appareil actuel ; parties 1 3 (autre utilisation : boîte de dialogue de connexion DriveControlSuite)
- ▶ [3] [5] : nom d'appareil après le prochain redémarrage du bus de terrain ; parties 1 3

8.4.5 A274 | PN adresse IP | G6 | V0

Adresse IP du servo-variateur dans le réseau PROFINET (source : IO-Controller).

- ▶ [0] : adresse IP actuelle
- > [1] : adresse IP après le prochain redémarrage du bus de terrain

8.4.6 A275 | PN masque de sous-réseau | G6 | V0

Masque de sous-réseau du servo-variateur dans le réseau PROFINET (source : IO-Controller).

- [0] : masque de sous-réseau actuel
- > [1] : masque de sous-réseau après le prochain redémarrage du bus de terrain

8.4.7 A276 | PN passerelle | G6 | V0

Adresse de passerelle du servo-variateur dans le réseau PROFINET (source : IO-Controller).

- ▶ [0] : adresse de passerelle actuelle
- ▶ [1] : adresse de passerelle après le prochain redémarrage du bus de terrain

8.4.8 A279 | PN MAC adresses | G6 | V0

Adresses MAC du servo-variateur dans le réseau PROFINET.

- ▶ [0] : appareil PROFINET
- ▶ [1] : X200
- ▶ [2] : X201

8.4.9 A280 | PN valeurs I&M | G6 | V1

Données d'identification et de maintenance du servo-variateur dans le réseau PROFINET (source : IO-Controller).

- [0] : code de l'installation, suivi du code de lieu (32 caractères max. chacun)
- > [1] : date de montage de l'appareil PROFINET
- > [2] : informations complémentaires relatives à l'appareil PROFINET

9 En savoir plus sur PROFINET ?

Les chapitres ci-après résument les notions essentielles, les services et les relations autour de PROFINET.

9.1 PROFINET

PROFINET (Process Field Network) est la norme Industrial-Ethernet ouverte pour l'automatisation développée par Siemens en collaboration avec l'association d'utilisateurs PROFIBUS-Nutzerorganisation e. V. PROFINET est normalisé dans CEI 61158 et CEI 61784.

PROFINET est basé sur Ethernet TCP/IP et est essentiellement utilisé pour les applications nécessitant une communication de données rapide via les réseaux Ethernet en combinaison avec les fonctions IT industrielles.

PROFINET transfère aussi bien les données process (PZD), les données de paramétrage (données de canal de paramètres), les données à des fins de diagnostic, les alertes ainsi que les applications IT – via un seul et même réseau.

PROFINET transfère les données avec et sans exigence de temps réel, les données process et les alertes étant exclusivement transférées via la communication Real-Time. Afin d'en garantir un ajustage optimal, PROFINET offre deux spécifications : PROFINET RT pour la communication Real-Time non synchronisée, PROFINET IRT pour la communication Real-Time synchronisée par cadence.

PROFINET suit le modèle Provider-Consumer qui place les partenaires de communication au même pied d'égalité : les données peuvent être envoyées sans la demande d'un autre participant au réseau. En règle générale, une commande (IO-Controller) lit les signaux des servo-variateurs (IO-Devices) lors d'un échange de données, les traite et les remet à la disposition des servo-variateurs.

9.2 Classes d'appareil

PROFINET répartit les participants au réseau par rapport à leurs tâches dans les classes d'appareil suivantes.

IO-Supervisor (ordinateur personnel)

IO-Supervisor est normalement un logiciel d'ingénierie et de diagnostic capable d'accéder à toutes les données process et de configuration et de traiter les alertes ou les messages de diagnostic. IO-Supervisor est généralement intégré au réseau seulement de manière provisoire.

IO-Controller (commande)

Un IO-Controller régule la communication des données, c.-à-d. qu'il reçoit les données process et les messages commandés par événement qu'il traite ensuite. Le rôle du IO-Controller est généralement assumé par un automate programmable industriel (API, p. ex. SIMATIC S7-1500).

IO-Device (servo-variateur)

Un IO-Device est normalement un appareil de terrain à disposition décentralisée (p. ex. un servovariateur) affecté à au moins un IO-Controller.

Un IO-Device transmet les données process et de configuration ainsi que les alertes. Il se compose en règle générale de modules comportant les différents signaux d'entrée et de sortie du processus correspondant.

9.3 Communication

Une commande (IO-Controller) pilote et régule la communication avec les servo-variateurs (IO-Devices) du réseau PROFINET. La commande transfère les données process cycliques (PZD) comme les instructions de commande aux servo-variateurs dont il reçoit les informations d'état actuelles.

Qui plus est, la commande et les servo-variateurs échangent de manière acyclique les données non sensibles au facteur temps comme les valeurs de paramètres de configuration ou les événements uniques via ce que l'on appelle les données de canal de paramètres.

Les deux services de communication fonctionnent en parallèle, la transmission des PZD cycliques étant prioritaire. Un télégramme acyclique est ajouté à chaque échange cyclique de données si nécessaire.

Information

Il est impossible de lire ou d'écrire les paramètres masqués dans DriveControlSuite lors de la communication via le bus de terrain.

9.3.1 Communication cyclique : données process

Les données process (PZD) sont des données nécessaires pour la commande et l'observation du processus en cours – par exemple les positions de consigne, les vitesses de déplacement ou les informations relatives à l'accélération.

Elles sont généralement utilisées pour l'échange des données en temps réel et permettent par ailleurs l'accès simultané à plusieurs paramètres d'entraînement. Les données process sont échangées en priorité rapidement et de manière cyclique via le canal temps réel RT.

Dans le cas de PROFINET, le trafic cyclique de données est directement basé sur l'adresse MAC d'un appareil et ne comporte aucune adresse IP. La longueur totale d'un paquet de données reste relativement faible en conséquence.

Le sens du flux de données revêt une importance majeure dans ce transfert de données. On distingue – du point de vue du participant concerné – les PZD de réception (= Receive PZD, RxPZD) et les PZD d'émission (= Transmit PZD, TxPZD).

Vous pouvez choisir librement les éléments de communication à envoyer et à recevoir ainsi que les données process à cet effet. La longueur et la structure des données process sont définies dans le cadre de la planification via des modules de données process (voir Modules de données process [12]78]).

Actuellement, il est possible d'échanger par servo-variateur 48 valeurs de paramètres d'une longueur totale maximale de 72 octets (36 mots) entre le IO-Controller et le IO-Device.

Vous trouverez de plus amples informations sur l'ajustage des données process sous Ajustage bus de terrain [2]71].

9.3.2 Communication acyclique : données de canal de paramètres

Information

Si vous utilisez l'exemple de projet fourni par Pilz pour la programmation des services de communication acycliques, le présent chapitre n'est pas important pour la pratique.

Le canal de paramètres sert à la transmission de données insensibles au facteur temps. Les données de canal de paramètres permettent l'accès pour la lecture et l'écriture aux paramètres de configuration d'un servo-variateur et transmettent les événements uniques.

Les données de canal de paramètres sont transférées de manière acyclique pendant le fonctionnement PROFINET cyclique sans entraver la communication PZD. Des services de communication acycliques spécifiques aux entraînements sont nécessaires à cet effet. Vous pouvez soit les programmer personnellement sur la base des blocs fonctionnels système SIMATIC RDREC et WRREC (voir les chapitres suivants), soit charger un exemple de projet spécifique Pilz spécialement adapté aux servo-variateurs Pilz depuis la zone de téléchargement Pilz dans votre TIA Portal et le paramétrer selon votre environnement système.

9.3.2.1 RDREC et WRREC : paramètres d'entrée et de sortie

PROFINET offre les fonctions Lecture ensemble de données et Écriture ensemble de données pour la transmission des données de canal de paramètres acycliques. Les interfaces correspondantes sont commandées via les blocs fonctionnels système SIMATIC à fonctionnement asynchrone RDREC (Read Record, lire l'ensemble de données) et WRREC (Write Record, écrire l'ensemble de données).

RDREC et WRREC comportent des paramètres d'entrée et de sortie spéciaux dans un ordre fixe. Les deux blocs communiquent via les paramètres d'entrée et de sortie décrits ci-dessous avec les IO-Devices dans le réseau.

RDREC : paramètres d'entrée et de sortie

Le bloc RDREC lit un ensemble de données RECORD à partir d'un composant matériel adressé dans le paramètre **ID**.

Fig. 9: Bloc fonctionnel système RDREC : paramètres d'entrée et de sortie

Paramètres	Type de données	Déclaration	
EN	BOOL	IN	Entrée d'autorisation
REQ	BOOL	IN	Transmettre l'ensemble de données (REQ = 1 : démarrer la transmission)
ID	HW_IO	IN	Identifiant du matériel d'un IO-Device ; est attribué automatiquement et peut par exemple être lu dans les propriétés de l'appareil (onglet Constantes système)
INDEX	DINT	IN	Numéro de l'ensemble de données (la valeur correspondante doit toujours être B02E hex)
MLEN	UINT	IN	Longueur maximale de l'ensemble de données à transmettre
ENO	BOOL	OUT	Sortie d'autorisation
VALID	BOOL	OUT	L'ensemble de données a été reçu et est valide
BUSY	BOOL	OUT	État de la lecture (BUSY = 1 : pas encore terminée)
ERROR	BOOL	OUT	État de la lecture (ERROR = 1 : erronée)
STATUS	DWORD	OUT	État du bloc RDREC ou informations sur l'erreur
LEN	UINT	OUT	Longueur de l'ensemble de données lu
RECORD	Variant	IN/OUT	Ensemble de données (composé de l'en- tête + données, voir chapitre RDREC, WRREC : ensemble de données RECORD [[] 74])

Tab. 15: Paramètres du bloc fonctionnel système RDREC

WRREC : paramètres d'entrée et de sortie

Le bloc fonctionnel système WRREC transmet l'ensemble de données RECORD vers un composant matériel adressé dans le paramètre ID.

Fig. 10: Bloc fonctionnel système WRREC : paramètres d'entrée et de sortie

Paramètres	Type de données	Déclaration	
EN	BOOL	IN	Entrée d'autorisation
REQ	BOOL	IN	Transmettre l'ensemble de données (REQ = 1 : démarrer la transmission)
ID	HW_IO	IN	Identifiant du matériel d'un IO-Device ; est attribué automatiquement et peut par exemple être lu via le Gestionnaire de matériel TIA > Périphérique > Caractéristiques
INDEX	DINT	IN	Numéro de l'ensemble de données (la valeur correspondante doit toujours être B02E hex)
ENO	BOOL	OUT	Sortie d'autorisation
DONE	BOOL	OUT	État de la communication : l'ensemble de données a été transmis
BUSY	BOOL	OUT	État de l'écriture (BUSY = 1 : pas encore terminée)
ERROR	BOOL	OUT	État de l'écriture (ERROR = 1 : erronée)
STATUS	DWORD	OUT	État du bloc WRREC ou informations sur l'erreur
RECORD	Variant	IN/OUT	Ensemble de données (composé de l'en- tête + données, voir chapitre RDREC, WRREC : ensemble de données RECORD [[]] 74])

Tab. 16: Paramètres du bloc fonctionnel système WRREC

9.3.2.2 RDREC et WRREC : processus de communication acyclique

Les diagrammes ci-après expliquent le processus de communication des blocs fonctionnels système RDREC et WRREC.

Lire l'ensemble de données : processus

Fig. 11: RDREC : processus

Dans le cas de RDREC, notez que chaque service de paramètre commence par une Request Lire l'ensemble de données et se termine par une Response Lire l'ensemble de données.

Écrire l'ensemble de données : processus

IO-Co	ntroller	D-Device
	1. WRREC [Header Request (Request_ID = 0x02) + Data]	Traitement
Soit OK	3. RDREC [Header Response (Response_ID = 0x02) + Data	a]
soit Erreur	3. RDREC [Header Response (Response_ID = 0x82) + Data	a]

Fig. 12: WRREC : processus

9.4 **Protocoles de communication**

Fig. 13: PROFINET : protocoles de communication

Un protocole optimisé Fast Ethernet convient pour la communication Real Time. Il s'agit du protocole Real-Time.

Il permet une transmission performante de données temps réel cycliques et de messages commandés par événement.

Les données standard PROFINET sans exigence temps réel, à l'exemple de valeurs de paramètres ou de données de diagnostic sont généralement transmises via les protocoles TCP/IP ou UDP/IP ; pour les applications IT typiques comme la transmission de sites Web, d'e-mails etc. PROFINET a recours aux protocoles IT standard comme, entre autres, HTTP ou SNMP.

9.5 Communication de service via PROFINET

Il est possible, via PROFINET, de transporter un trafic de données Ethernet quelconque entre les participants dans un réseau PROFINET. Par ce biais, Pilz rend possible la communication de service entre DriveControlSuite et les servo-variateurs Pilz PMC SC6 et PMC SI6 via le réseau PROFINET.

La commande (IO-Controller) sert de passerelle vers le réseau Ethernet dans lequel sont mémorisés l'adresse IP, le masque de sous-réseau et la passerelle des participants PROFINET. La transmission des données Ethernet est cyclique, c.-à-d. que les propriétés temps réel PROFINET (communication via les données process) sont préservées.

On distingue deux topologies dans la communication de service via PROFINET :

Topologie 1

Le TIA Portal et DriveControlSuite sont exécutés sur un ordinateur ; seul le réseau PROFINET est utilisé

Topologie 2

Le TIA Portal et DriveControlSuite sont exécutés sur différents ordinateurs ; une médiation est effectuée entre le réseau PROFINET et Ethernet

Information

Pour pouvoir utiliser la communication de service via PROFINET, DriveControlSuite doit être connecté au réseau PROFINET et se trouver dans le même sous-réseau que le TIA Portal.

Si vous affectez une adresse IP non volatile au servo-variateur, DriveControlSuite est capable de trouver le servo-variateur même sans la commande.

9.6 Adressage réseau Ethernet

Tous les participants au réseau PROFINET reposent sur la norme Industrial-Ethernet, c.-à-d. que pour pouvoir adresser le servo-variateur dans le système PROFINET IO, il est important d'attribuer les adresses et les noms ci-après.

9.6.1 Adresse MAC

Chaque interface réseau d'un appareil dans un réseau Ethernet nécessite une adresse propre – une adresse MAC. L'adresse MAC est utilisée comme adresse source et cible pour l'échange de données cyclique.

Une adresse MAC est constitué d'une partie fixe et d'une partie variable. La partie fixe caractérise le fabricant (3 octets), la partie variable distingue les abonnés Ethernet et doit être unique à l'échelle mondiale (également 3 octets). Une adresse MAC peut transmettre exclusivement entre deux abonnés d'un même sous-réseau.

Les adresses MAC des interfaces sont attribuées par STOBER et ne peuvent pas être modifiées.

Information

La plage d'adresses MAC du matériel STOBER est : 00:11:39:00:00:00 – 00:11:39:FF:FF:FF

L'adresse MAC de l'interface PROFINET peut être lue à l'aide du paramètre A279 PN MAC adresses.

9.6.2 Adresse IP

Chaque participant PROFINET doit prendre en charge différents protocoles basés sur Ethernet, au minimum TCP/IP et UDP/IP.

Tous les paquets de données envoyés via le protocole IP contiennent les adresses correspondantes du destinataire et de l'expéditeur. Par conséquent, chaque abonné PROFINET a besoin d'une adresse IP unique pour pouvoir être adressé.

Le protocole IP est indépendant du matériel⁵; contrairement à l'adresse MAC qui est attribuée de manière fixe, l'adresse IP est explicitement affectée à chaque servo-variateur.

L'adresse IP sert à l'échange acyclique de données, par exemple le transfert de la configuration vers la commande, la configuration du servo-variateur ainsi que la lecture des informations d'appareil et de diagnostic.

Une adresse IPv4 est composée de 4 décimales séparées par un point, tirées de la plage de valeurs 0 – 255.

L'adresse IP d'un servo-variateur peut être lue à l'aide du paramètre A274 PN adresse IP.

9.6.3 Masque de sous-réseau

Une adresse IP est toujours composée d'un identifiant de réseau (pour l'identification du réseau) et d'un identifiant d'hôte (pour l'identification de l'abonné). Un masque de sous-réseau définit les parties d'une adresse IP à affecter à l'identifiant réseau. Il possède la structure de l'adresse IP, mais ne marque toutefois que l'identifiant réseau.

Le masque de sous-réseau peut être lu à l'aide du paramètre A275 PN masque de sous-réseau.

9.6.4 Sous-réseaux et passerelles

Les adresses IP d'un réseau sont généralement divisées en sous-réseaux. Les sous-réseaux servent à mettre à disposition des réseaux autonomes avec une plage d'adresses. Tous les participants PROFINET connectés via des commutateurs se trouvent dans un sous-réseau, c.-à-d. qu'ils communiquent par voie directe. Tous les participants à un sous-réseau possèdent le même masque de sous-réseau.

Les passerelles sont des éléments d'un sous-réseau et ont pour tâche de transférer les requêtes de réseau spécifiques au sous-réseau vers d'autres sous-réseau.

Information

Notez que la communication Real-Time n'est possible qu'à l'intérieur d'un sousréseau en raison de l'adressage via les adresses MAC ! L'utilisation de routeurs dans le cas de la communication Real-Time via PROFINET est exclue.

9.6.5 Adressage MAC et IP via le nom d'appareil

Pour pouvoir identifier de façon univoque un servo-variateur (IO-Device) dans un système PROFINET IO, il doit posséder un nom d'appareil symbolique et unique dans le système. Ce nom est attribué dans la phase de planification dans le TIA Portal et transféré ensuite vers les servovariateurs. Le nom d'appareil sert au paramétrage des différents servo-variateurs pendant le démarrage du système ainsi qu'à l'affectation des adresses MAC et IP correspondantes via DCP ou DHCP.

Observez les conventions ci-après lors de la définition de noms d'appareils :

- Le nom d'appareil est limité à 240 caractères maximum.
 Les lettres, chiffres, points et tirets sont autorisés.
- Un composant du nom, c.-à-d. une chaîne de caractères entre deux points, ne doit en aucun cas dépasser 63 caractères.
- Les caractères spéciaux comme trémas, parenthèses, points d'interrogation, barres obliques, espaces etc. ne sont pas autorisés.
- Le nom d'appareil ne doit en aucun cas commencer par des chiffres.
- ▶ Le nom d'appareil ne doit en aucun cas commencer ni se terminer par un signe moins (-) ni par un point (.).
- ▶ Le nom d'appareil ne doit en aucun cas avoir la forme n.n.n.n (n = 0 999).
- Le nom d'appareil ne doit en aucun cas commencer par la chaîne de caractères port-xyz- (x, y, z = 0 - 9).
- Le tiret bas (_) n'est pas autorisé.

9.7 Temps de cycles

Référez-vous au tableau suivant pour les temps de cycles possibles.

Туре	Temps de cycles	Paramètres utiles
Bus de terrain PROFINET RT, communication cyclique	1 ms, 2 ms, 4 ms, 8 ms	Réglable dans le TIA Portal
Bus de terrain PROFINET IRT, communication cyclique	1 ms, 2 ms, 4 ms	Réglable dans le TIA Portal

Tab. 17: Temps de cycles

9.8 Commander et exécuter des actions

Pour pouvoir commander et exécuter des actions via le bus de terrain, vous devez au préalable activer la commande d'action dans DriveControlSuite et ajouter aux données process l'octet de commande et le mot d'état pour les actions.

Activer la commande d'action

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant Application PROFIdrive > Fonctions additionnelles.
- 3. Activez l'option Commande d'action.
- 4. Répétez les étapes pour l'axe B (seulement dans le cas de régulateurs double axe).

Adapter les données process de réception

- 1. Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant PROFINET > Données process de réception RxPZD.
- A90[0] A90[23], A91[0] A91[23] : ajoutez aux données process de réception l'octet de commande pour la commande d'actions. Régulateur mono-axe : complétez 1.A75. Régulateur double axe : complétez 1.A75 pour l'axe A et 2.A75 pour l'axe B.

Adapter les données process d'émission

- Dans l'arborescence de projet, marquez le servo-variateur concerné et cliquez dans le menu de projet > Zone Assistant sur l'axe planifié souhaité.
- 2. Sélectionnez l'assistant PROFINET > Données process d'émission TxPZD.
- A94[0] A94[23], A95[0] A95[23] : ajoutez aux données process d'émission le mot d'état pour la commande d'actions. Régulateur mono-axe : complétez 1.A69. Régulateur double axe : complétez 1.A69 pour l'axe A et 2.A69 pour l'axe B.

Exécuter une action

Exécutez ensuite l'action souhaitée. Pour ce faire, tenez compte des éventuelles conditions préalables concernant l'état de l'appareil ainsi que des autres mesures nécessaires après le lancement de l'action. Vous trouverez toutes les conditions préalables ainsi que des informations plus détaillées sur les différentes actions dans les descriptions des paramètres correspondants dans DriveControlSuite.

Sélectionner l'action	Rétablir l'état de l'appareil	Démarrer l'action	Exécuter l'étape suivante	Terminer l'action (selon la progression = 100 %)
0001 bin = Sauvegarder valeurs (A00)	—	Exécuter Execute (A75, bit 0 =1)	_	Annuler Execute (A75, bit 0 = 0)
0011 bin = Remettre à zéro aiguille entraînée (A37)				
0111 bin = Effacer référence (I38)				
1000 bin = Effacer la mémoire fin de course (I52)				
0010 bin = Redémarrer (A09)	E48 ≠ 4: Validé + E48 ≠ 7: Arrêt rapide	Exécuter Execute (A75, bit 0 =1)	—	Annuler Execute (A75, bit 0 = 0)
1101 bin = Test de bobinage (B43)	E48 = 2: Activable	Exécuter Execute (A75, bit 0 =1)	_	Annuler Execute (A75, bit 0 = 0)
1010 bin = Test de phase (B40)	E48 = 2: Activable	Exécuter Execute	Autoriser le servo-variateur	Annuler Execute (A75, bit 0 = 0) +
1011 bin = Mesurer le moteur (B41)	1	(A75, bit 0 =1)	(E48 = 4: Validé)	Annuler l'autorisation
1100 bin = Optimiser régulateur de courant (B42)				
1110 bin = Optimiser régulateur de courant (immobilisation) (B49)				
0100 bin = Tester frein (B300)				
0101 bin = Roder frein (B301)				
0110 bin = Roder frein 2 (B302)				
1001 bin = Tester frein (S18)				

Tab. 18: Sélectionner et exécuter une action

9.9 Ajustage bus de terrain

Le paramètre A100 permet de définir dans le logiciel de mise en service DriveControlSuite l'ajustage pour la transmission cyclique des données process dans le réseau PROFINET. Les valeurs sont soit converties et affichées comme entiers, soit transmisses sans ajustage comme valeurs brutes conformément aux types de données. La transmission acyclique des données de canal de paramètres est définie par les attributs du canal de paramètres (voir Éléments Attribute et Format : combinaisons possibles [10] 77]) et s'effectue également soit comme entier, soit sans ajustage.

Indépendamment des réglages ou des attributs sélectionnés dans le paramètre A100, la configuration, tout comme le micrologiciel, utilise exclusivement les valeurs brutes. Le graphique ciaprès offre une vue d'ensemble de l'ajustage du bus de terrain.

Fig. 14: Aperçu de l'ajustage du bus de terrain

Lors de la transmission en entier, le nombre de décimales peut être défini pour tous les paramètres relatifs aux positions, vitesses, accélérations, temporisations et à l'à-coup. Le nombre de décimales est prédéfini pour tous les autres paramètres. Les valeurs d'ajustage sont émises dans DriveControlSuite dans les propriétés d'un paramètre. Le tableau ci-dessous contient la liste des paramètres à l'aide desquels vous pouvez prédéfinir le nombre de décimales pour la transmission ajustée.

Ajustage	Modèle d'axe	Modèle d'axe du Maître
Position	106	G46
Vitesse	166	G66
Accélération, Décélération, À- coup	167	G67

Tab. 19: Ajustage du bus de terrain en cas d'entier : paramètre de définition des décimales

10 Annexe

10.1 Adresser un paramètre pour l'ensemble de données RECORD

Pour pouvoir adresser un paramètre par le bus de terrain, vous avez besoin de son Axis_number, de son Parameter_number et de son sous-index. Ceux-ci sont calculés à partir des coordonnées de paramètres Pilz (axe, groupe, ligne, élément).

Pour les informations de base relatives aux paramètres, voir Signification des paramètres [1]19].

10.1.1 Déterminer l'Axis_number

L'Axis_number correspond à l'axe du paramètre.

10.1.2 Calculer le Parameter_number

Information

Notez que le Parameter_number doit être indiqué sous forme hexadécimale dans l'ensemble de données RECORD.

Le Parameter_number est calculé à partir du groupe et de la ligne du paramètre selon la formule suivante :

Parameter_number décimal = 8192 + (numéro du groupe × 512) + numéro de la ligne

Exemple de calcul pour le paramètre E200 (numéro du groupe = 4 , numéro de la ligne = 200) : Parameter_number E200 = 8192 + (4 × 512) + 200 = 10440 = 28C8 hex

Groupe	Numéro	Paramètres adressables
A : Servo-variateur	0	A00 – A511
B : Moteur	1	B00 – B511
C : Machine	2	C00 – C511
D : Valeur de consigne	3	D00 – D511
E : Affichage	4	E00 – E511
F : Bornes	5	F00 – F511
G : Technologie	6	G00 – G511
H : Encodeur	7	H00 – H511
I : Motion	8	100 – 1511
J : Blocs de déplacement	9	J00 – J511
K : Panneau de commande	10	K00 – K511
M : Profils	12	M00 – M511
P : Paramètres personnalisés	15	P00 – P511
Q : Paramètres personnalisés, dépendants de l'instance	16	Q00 – Q511
R : Données de production	17	R00 – R511
S : Sécurité	18	S00 – S511
Groupe	Numéro	Paramètres adressables
------------------------------	--------	------------------------
T : Scope	19	T00 – T511
U : Fonctions de protection	20	U00 – U511
Z : Compteur de dérangements	25	Z00 – Z511

Tab. 20: Groupes et paramètres

10.1.3 Déterminer le sous-index

Le sous-index correspond à l'élément du paramètre Array ou Record. Le sous-index des paramètres simples est 0.

Annexe

Intern

10.2 RDREC, WRREC : ensemble de données RECORD

10.2.1 WRREC : RECORD-Request : structure de l'en-tête

Les valeurs de paramètres sont généralement transmises via l'en-tête de l'ensemble de données RECORD. Dans le cas d'un RECORD-Request, l'en-tête se compose des éléments suivants dans l'ordre indiqué.

Élément	Type de données	Valeur, plage de	valeurs
Request_reference	OCTET	0 hex – FF hex	Numéro Request quelconque
Request_ID	OCTET	1 hex	Request lecture
		2 hex	Request écriture
		Toutes les autres valeurs	Réservé
Axis_number	OCTET	0 – 3	Adressage de l'axe
Number_of_parameters	OCTET	1	Nombre de paramètres à traiter
		Toutes les autres valeurs	Réservé
Attributs	OCTET	10 hex	Mode d'accès : Value
		80 hex	Mode d'accès : Valeur brute
		81 hex	Mode d'accès : Entier
		82 hex	Mode d'accès : Virgule flottante
Number_of_elements	OCTET	1 – 32 hex	1 – 50 paramètres à écrire ou à lire
Parameter_number	WORD	2000 hex – 5FFF hex	Groupe et ligne d'un paramètre
Sous-index	WORD	0 – 3E80 hex	Élément d'un paramètre Array et Record; dans le cas de paramètres simples, la valeur = 0
Format	OCTET	8 hex	Format de transmission : FLOAT
(condition : Request ID = 2 hex)		41 hex	Format de transmission : BYTE
···· · · · · · · · · · · · · · · · · ·		42 hex	Format de transmission : WORD
		43 hex	Format de transmission : DWORD
		1C hex, 1D hex, 1E hex	Format de transmission : STRING avec 8, 16 ou 80 caractères
Number_of_values (condition : Request_ID = 2 hex)	OCTET	1 – 50	Nombre de valeurs à traiter ; valeur = 1 (dans le cas d'un paramètre simple) ou valeur = valeur de Number_of_elements ; étant donné que la Request RECORD ne doit en aucun cas dépasser 240 octets, il n'est pas toujours possible de transmettre un maximum de 50 éléments – en fonction du format

Élément	Type de données	Valeur, plage de valeurs	
1st value (condition : Request_ID = 2 hex)	DINT	1. Valeur de paramètre	Valeur dans le cas d'un paramètre simple
2nd value – 50th value (condition : Request_ID = 2 hex)	DINT	1 – 32 hex	Valeur = valeur de Number_of_elements

Tab. 21: WRREC : RECORD-Request : structure de l'en-tête

10.2.2 RDREC : RECORD-Response : structure de l'en-tête

Les valeurs de paramètres sont généralement transmises via l'en-tête de l'ensemble de données RECORD. Dans le cas d'une RECORD-Response, l'en-tête se compose des éléments suivants dans l'ordre indiqué.

Élément	Type de données	Valeur, plage de	valeurs
Response_reference	OCTET	0 hex – FF hex	Valeur = numéro de la Request RECORD
Response_ID	OCTET	1 hex	Réponse positive à une Request lecture
		2 hex	Réponse positive à une Request écriture
		81 hex	Réponse négative à une Request lecture
		82 hex	Réponse négative à une Request écriture
Axis_number	OCTET	0 – 3	Adressage de l'axe
Number_of_parameters	OCTET	1	Nombre de paramètres à traiter
Format	OCTET	8 hex	Format de transmission : FLOAT
		41 hex	Format de transmission : BYTE
		42 hex	Format de transmission : WORD
		43 hex	Format de transmission : DWORD
		1C hex, 1D hex, 1E hex	Format de transmission : STRING avec 8, 16 ou 80 caractères
		44 hex	Error en cas d'erreur
Number_of_values	OCTET	1	Nombre de valeurs à traiter
1st value ou error code	DINT	1. Valeur de paramètre	Valeur dans le cas d'un paramètre simple
	WORD		Code d'erreur en cas d'erreur (voir le tableau RDREC, WRREC : codes d'erreur [1] 76])
2nd value – 50th value	DINT	1 – 32 hex	Valeur = valeur de Number_of_elements

Tab. 22: RDREC : RECORD-Response : structure de l'en-tête

10.2.3 RDREC, WRREC : codes d'erreur

Le tableau ci-après montre les codes d'erreur possibles pour les blocs fonctionnels système RDREC et WRREC.

Code d'erreur	Cause
0 hex	Paramètre inconnu ou arrêt de configuration
1 hex	Accès à un paramètre protégé en écriture
2 hex	Accès à un paramètre dont la valeur se situe en dehors des limites
3 hex	Accès à un sous-index non disponible (paramètre Array)
B hex	Niveau Utilisateur pas atteint
11 hex	Modification non autorisée du paramètre dans l'état actuel de l'appareil ; désactiver l'autorisation
14 hex	Valeur invalide à l'intérieur de ses limites maximales ; c'est le cas seulement pour les paramètres de sélection avec plage de définition incomplète
16 hex	Une ou plusieurs valeurs erronées dans les éléments Attribute, Number_of_elements, Parameter_number et Subindex
17 hex	Spécification de format invalide
18 hex	Valeurs contradictoires dans les éléments Number_of_elements et Number_of_values
21 hex	Request_ID invalide = Service not supported ; s'applique pour les erreurs dans l'en-tête du bloc de commande
A5 hex	Erreur ne pouvant être spécifiée de plus près
B0 hex	Service de paramètre actuellement impossible ou aucune description de paramètre valide disponible
B2 hex	Adresse de paramètre inconnue (paramètre ou élément inexistant)
B3 hex	Accès Read-Write impossible à l'adresse de paramètre indiquée
B9 hex	Service de paramètre : valeur dans la singularité (observer ENUM-List)
BA hex	Service de paramètre : collision avec d'autres valeurs
C0 hex	Service de paramètre : erreur dans la fonction Pre-Read
C1 hex	Service de paramètre : erreur dans la fonction Post-Write ; valeur déjà arrivée

Tab. 23: RDREC, WRREC : codes d'erreur

10.2.4 Éléments Attribute et Format : combinaisons possibles

L'élément **Attribute** décrit l'accès à une structure de paramètre (p. ex. aux valeurs, textes descriptifs etc.), l'élément **Format** décrit le format de transmission d'un paramètre. Les valeurs des deux éléments peuvent être combinées comme suit.

Attribut	Format					
	FLOAT (8 hex)	BYTE (41 hex)	WORD (42 hex)	DWORD (43 hex)	STRING (1C hex, 1D hex, 1E hex)	
Value (10 hex)	Non autorisé	Non autorisé	Non autorisé	Valeur graduée pour tous les paramètres représentés en entiers (4 octets)	8, 16 ou 80 caractères	
Valeur brute (80 hex)	Valeur brute non graduée, spécialement pour le type de données FLOAT (4 octets)	Valeur brute non graduée, spécialement pour les types de données BOOL, WORD, I8 (1 octet)	Valeur brute non graduée, spécialement pour les types de données WORD, I16 (2 octets)	Valeur brute non graduée, spécialement pour les types de données DWORD, 132 (4 octets)	Non autorisé	
Valeur brute (81 hex)	Non autorisé	Non autorisé	Non autorisé	Valeur graduée pour tous les paramètres représentés en entiers (4 octets)	Non autorisé	
Virgule flottante (82 hex)	Représentatio n graduée pour tous les paramètres comme virgule flottante (4 octets)	Non autorisé	Non autorisé	Non autorisé	Non autorisé	

Tab. 24: Attribute, Format : combinaisons possibles

10.3 Modules de données process

Les modules de données process déterminent le volume de données pour la transmission PZD. Lors de la configuration dans le TIA Portal, il faut planifier un des modules de données process suivants pour le servo-variateur pour chaque axe. Lorsqu'un nouveau projet est créé, nous recommandons le mode de transmission **tout cohérent**.

Module	Données d'entrée [octet]	Données de sortie [octet]	Transmission
M101 02W PZD tout coh.	4	4	2 mots (entrées, sorties), tout cohérent*
M102 04W PZD all coh.	8	8	4 mots (entrées, sorties), tout cohérent
M103 06W PZD all coh.	12	12	6 mots (entrées, sorties), tout cohérent
M104 12W PZD all coh.	24	24	12 mots (entrées, sorties), tout cohérent
M105 18W PZD all coh.	36	36	18 mots (entrées, sorties), tout cohérent
M106 24W PZD all coh.	48	48	24 mots (entrées, sorties), tout cohérent
M107 36W PZD all coh.	72	72	36 mots (entrées, sorties), tout cohérent
M111 02W PZD élément coh.	4	4	2 mots (entrées, sorties), éléments cohérents**
M112 04W PZD élément coh.	8	8	4 mots (entrées, sorties), éléments cohérents
M113 06W PZD élément coh.	12	12	6 mots (entrées, sorties), éléments cohérents
M114 12W PZD élément coh.	24	24	12 mots (entrées, sorties), éléments cohérents
M115 18W PZD élément coh.	36	36	18 mots (entrées, sorties), éléments cohérents
M116 24W PZD élément coh.	48	48	24 mots (entrées, sorties), éléments cohérents
M117 36W PZD élément coh.	72	72	36 mots (entrées, sorties), éléments cohérents

Tab. 25: Modules de données process

*) tout cohérent :

**) éléments cohérents :

Le paquet de données process est traité dès sa réception complète Des paramètres individuels du paquet sont traités dès réception complète du paramètre

10.4 Informations complémentaires

Les documentations listées ci-dessous vous fournissent d'autres informations pertinentes sur les servo-variateurs. Vous trouverez l'état actuel des documentations sous : <u>https://www.pilz.com/fr-INT</u>.

Titre	Documentation	Contenus	Nº ID
Servo-variateur PMC SC6	Manuel	Structure du système, caractéristiques techniques, planification, stockage, montage, raccordement, mise en service, fonctionnement, service après-vente, diagnostic	1005343
Système modulaire avec PMC SI6 et PMC PS6	Manuel	Structure du système, caractéristiques techniques, planification, stockage, montage, raccordement, mise en service, fonctionnement, service après-vente, diagnostic	1005342
Application Drive Based (DB) – PMC SC6, PMC SI6	Manuel	Planification, configuration, paramétrage, essai de fonctionnement, informations complémentaires	1006906
Application PROFIdrive – PMC SC6, PMC SI6	Manuel	Planification, configuration, paramétrage, essai de fonctionnement, informations complémentaires	1006911

Informations complémentaires et sources sur lesquelles repose la présente documentation ou dont proviennent les citations :

Informations concernant PROFINET

Vous trouverez les informations générales relatives à PROFINET sur le site Web PROFIBUS & PROFINET International (PI), <u>http://www.profibus.fr</u>. Les directives spécifiques à PROFINET, les profils, présentations, brochures ou logiciels peuvent être téléchargés dans l'espace correspondant.

Informations concernant le TIA Portal Siemens

Les principales informations concernant le TIA Portal Siemens ainsi que les documents complémentaires, liens ou trainings sont disponibles à l'adresse http://www.industry.siemens.com/topics/global/fr/tia-portal/Pages/default.aspx.

PMC SC6, PMC SI6 – Description de l'appareil

Un fichier GSD servant à l'intégration facile des servo-variateurs des gammes PMC SC6 et PMC SI6 dans l'environnement système correspondant est disponible à l'adresse : <u>https://www.pilz.com/fr-INT</u>, terme de recherche GSD.

10.5 Abréviations

Abréviation	Signification
BF	Busfehler (erreur du bus)
СВА	Component Based Automation (automatisation basée sur les composants)
CPU	Central Processing Unit (unité centrale)
DCP	Discovery and Configuration Protocol (protocole de découverte et de configuration)
DHCP	Dynamic Host Configuration Protocol (protocole de configuration dynamique d'hôte)
DP	Dezentrale Peripherie (périphérie décentralisée)
CEM	Compatibilité Électromagnétique
GSD	General Station Description (données de base de l'appareil)
GSDML	General Station Description Markup Language (langage de description de stations génériques)
HMI	Human Machine Interface (interface homme-machine)
HTTP	Hypertext Transfer Protocol (protocole de transfert hypertexte)
IEC	International Electrotechnical Commission (Commission électrotechnique internationale)
IEEE	Institute of Electrical and Electronics Engineers (Institut des ingénieurs électriciens et électroniciens)
I/O	Input/Output (entrée/sortie)
IP	Internet Protocol (protocole Internet)
IRT	Isochronous Real-Time (temps réel isochrone)
LAN	Local Area Network (réseau local)
LSB	Least Significant Bit (bit de poids faible)
MAC	Media Access Control (contrôle d'accès au support)
PG	Programmiergerät (appareil de programmation)
PROFIBUS	Process Field Bus
PROFINET	Process Field Network
PZD	Prozessdaten (données process)
RDREC	Read Record (lire l'ensemble de données)
RT	Real-Time (temps réel)
RxPZD	Receive PZD (données process de réception)
SNMP	Simple Network Management Protocol (protocole simple de gestion de réseau)
API	Automate Programmable Industriel
TIA	Totally Integrated Automation
ТСР	Transmission Control Protocol (protocole de contrôle de transmissions)
TxPZD	Transmit PZD (données process d'émission)

Abréviation	Signification
UDP	User Data Protocol (protocole de datagramme utilisateur)
WRREC	Write Record (écrire l'ensemble de données)

100Base-TX

Norme de réseau Ethernet basée sur des câbles en cuivre symétriques ; les abonnés sont raccordés à un commutateur via des câbles en cuivre torsadés par paire (Shielded Twisted Pair, niveau de qualité CAT 5e). 100Base-TX est le perfectionnement logique de 10Base-T dont il englobe les caractéristiques avec la possibilité d'une vitesse de transmission de 100 MBit/s (Fast Ethernet).

Adresse MAC

Adresse du matériel pour l'identification univoque d'un appareil dans un réseau Ethernet. L'adresse MAC est attribuée par le fabricant et est composée d'un identifiant de fabricant de 3 octets et d'un identifiant d'appareil de 3 octets.

Bloc fonctionnel système (Siemens)

Bloc de code dans le cadre d'un programme utilisateur Siemens structuré à partir duquel les fonctions système importantes pour PROFINET IO sont appelées. Les interfaces d'entrée et de sortie correspondantes peuvent être paramétrées séparément. Les valeurs de variables mémorisées dans un bloc fonctionnel ne se perdent pas après leur traitement vu qu'elles sont enregistrées. WRREC (Write Record, écrire l'ensemble de données) et RDREC (Read Record, lire l'ensemble de données) sont des blocs fonctionnels système Siemens typiques.

Classe d'application (AC)

Fonctions d'entraînement standardisées selon le profil d'appareil PROFIdrive. Compte tenu de sa large gamme d'applications, six classes différenciées selon leur contenu fonctionnel sont définies pour PROFIdrive. Un entraînement peut couvrir une ou plusieurs classes.

Diffusion IPv4-Limited

Type de diffusion dans un réseau avec IPv4 (Internet Protocol Version 4). L'adresse IP 255.255.255.255 est indiquée comme destination. Le contenu de la diffusion n'est pas transmis par un routeur et est par conséquent limité au propre réseau local.

Domaine de diffusion

Réseau logique de périphériques réseau dans un réseau local qui atteint tous les participants par la diffusion.

Données process (PZD)

Informations sur la commande et sur l'état qui sont sensibles au facteur temps et transmises de manière cyclique à l'aide de télégrammes dans le réseau PROFINET. En fonction de la couche des différents participants, on distingue les PZD de réception (RxPZD) et les PZD d'émission (TxPZD).

Fichier GSD

Contient les caractéristiques techniques d'un IO-Device (type, données de configuration, paramètres, informations de diagnostic ...) dans le format XML conformément à la spécification GSDML. Un fichier GSD sert de base de configuration aux systèmes de planification et est généralement mis à disposition par le fabricant de l'appareil concerné.

IO-Controller

En règle générale un automate programmable industriel qui contrôle la tâche d'automatisation et régule la communication des données.

IO-Device

Appareil de terrain à disposition décentralisée affecté logiquement à un IO-Controller PROFINET et contrôlé et commandé par ce dernier. Un IO-Device comprend plusieurs modules et sousmodules.

IO-Supervisor

Généralement un logiciel d'ingénierie capable d'accéder à toutes les données process et de configuration. Un IO-Supervisor n'est activé que provisoirement pour le paramétrage des IO-Devices, la mise en service du système IO et à des fins de diagnostic.

Modèle i²t

Modèle de calcul pour la surveillance thermique.

Module fonctionnel

Unité logicielle fonctionnelle comprenant une copie nommée d'une structure de données et des opérations associées définies par un type de module fonctionnel correspondant.

Objet technologique (TO)

Objet logiciel dans une commande Siemens qui représente un composant mécanique. Il encapsule la fonctionnalité technologique et permet une configuration et un paramétrage uniformes.

PROFIdrive

Interface d'entraînement normalisée pour les bus standard ouverts PROFIBUS et PROFINET. Elle définit le comportement de l'appareil et la procédure d'accès aux données internes de l'appareil pour les entraînements électriques sur PROFINET et PROFIBUS. L'interface est spécifiée par la Nutzerorganisation PROFIBUS und PROFINET International (PI) et stipulée par la norme CEI 61800-7-303 comme norme viable.

PROFINET

Norme Ethernet ouverte de la PROFIBUS Nutzerorganisation e. V. (PNO) pour l'automatisation.

PROFINET IRT

Méthode de transmission pour les processus de haute précision et synchronisés dans un système PROFINET IO.

PROFINET RT

Méthode de transmission des données process sensibles au facteur temps dans un système PROFINET IO.

PROFIsafe

Norme de communication relative à norme de sécurité CEI 61508 contenant aussi bien la communication standard que la communication à sécurité intégrée. Cette norme permet, sur la base de composants de réseau standard, une communication en toute sécurité pour les bus standard PROFIBUS et PROFINET et est définie dans la norme CEI 61784-3-3 comme norme internationale.

PZD de réception (RxPZD)

Données process qu'un participant reçoit dans le réseau PROFINET.

PZD d'émission (TxPZD)

Données process qu'un participant envoie dans le réseau PROFINET.

TCP/IP

Famille de protocoles composée du protocole de commande de transmission TCP et d'un protocole Internet IP. TCP est responsable de la transmission, c.-à-d. du trafic de données à proprement parler ; IP, pour pouvoir adresser sans équivoque un ordinateur personnel dans un réseau.

Télégramme par défaut

Données ayant une séquence prédéfinie et des contenus standardisés qui sont échangées de manière cyclique entre la commande et le servovariateur pendant la communication PROFIdrive. Le télégramme est structuré selon le profil d'appareil PROFIdrive.

Télégramme Siemens

Données ayant une séquence prédéfinie et des contenus standardisés qui sont échangées de manière cyclique entre la commande et le servovariateur pendant la communication PROFIdrive. Le télégramme est structuré selon les spécifications spécifiques du fabricant Siemens.

UDP/IP

Protocole de transport minimaliste pour des réseaux comme le réseau sans fil, qui offre exclusivement des fonctions essentielles pour le transport de données. Le protocole UDP/IP est un service simple qui ne travaille pas avec une connexion permanente de part et d'autre. Un établissement et une coupure de la connexion, ainsi qu'un acquittement des paquets de données reçus n'ont pas lieu. Le trafic de données peut être contrôlé en option à l'aide d'une somme de contrôle. Des mécanismes de dépannage comme pour TCP/IP n'existent pas, d'où la probabilité d'une perte des données, d'une duplication des données ou d'une erreur de séquence des données à transmettre.

Fig. 1	PROFINET : structure du réseau à l'exemple de la gamme PMC SI6	11
Fig. 2	DS6 : interface programme	13
Fig. 3	DriveControlSuite : navigation via les liens textuels et les symboles	16
Fig. 4	TIA Portal : interface programme de la vue du portail	17
Fig. 5	TIA Portal : interface programme de la vue du projet	18
Fig. 6	PROFINET : surveillance de la connexion	52
Fig. 7	Diodes électroluminescentes indiquant l'état PROFINET	53
Fig. 8	Diodes électroluminescentes indiquant l'état de la connexion au réseau PROFINET	54
Fig. 9	Bloc fonctionnel système RDREC : paramètres d'entrée et de sortie	63
Fig. 10	Bloc fonctionnel système WRREC : paramètres d'entrée et de sortie	64
Fig. 11	RDREC : processus	65
Fig. 12	WRREC : processus	65
Fig. 13	PROFINET : protocoles de communication	66
Fig. 14	Aperçu de l'ajustage du bus de terrain	71

Tab. 1	Correspondance entre la terminologie Pilz et PROFINET	9
Tab. 2	Description du raccordement X200 et X201	12
Tab. 3	Groupes de paramètres	19
Tab. 4	Paramètres : types de données, types de paramètres, valeurs possibles	20
Tab. 5	Types de paramètres	21
Tab. 6	Objets technologiques de Siemens	25
Tab. 7	Modules fonctionnels Siemens DriveLib	26
Tab. 8	Combinaisons : bloc fonctionnel ou objet technologique avec télégramme	26
Tab. 9	Limitations : paramètres nécessaires du côté servo-variateur et du côté commande	38
Tab. 10	Signification des DEL rouges (BF)	53
Tab. 11	Signification de la DEL verte (Run)	53
Tab. 12	Signification des DEL vertes (Link)	54
Tab. 13	Signification des DEL jaunes (Act)	54
Tab. 14	Événement 52 – Causes et mesures	56
Tab. 15	Paramètres du bloc fonctionnel système RDREC	63
Tab. 16	Paramètres du bloc fonctionnel système WRREC	64
Tab. 17	Temps de cycles	68
Tab. 18	Sélectionner et exécuter une action	70
Tab. 19	Ajustage du bus de terrain en cas d'entier : paramètre de définition des décimales	71
Tab. 20	Groupes et paramètres	72
Tab. 21	WRREC : RECORD-Request : structure de l'en-tête	74
Tab. 22	RDREC : RECORD-Response : structure de l'en-tête	75
Tab. 23	RDREC, WRREC : codes d'erreur	76
Tab. 24	Attribute, Format : combinaisons possibles	77
Tab. 25	Modules de données process	78

Support technique

Pilz vous propose une assistance technique 24 heures sur 24.

Amérique

Brésil +55 11 97569-2804 Canada +1 888 315 7459 Mexique +52 55 5572 1300 USA (appel gratuit) +1 877-PILZUSA (745-9872)

Asie

Chine +86 400-088-3566 Corée du sud +82 31 778 3300 Japon +81 45 471-2281

Australie et Océanie

Australie +61 3 95600621 Nouvelle-Zélande +64 9 6345350

Europe

Allemagne +49 711 3409-444 Autriche +43 1 7986263-444 Belgique, Luxembourg +32 9 3217570 Espagne +34 938497433 France +33 3 88104003

Irlande +353 21 4804983 Italie, Malte +39 0362 1826711 Pays-Bas +31 347 320477 Royaume-Uni +44 1536 462203 Scandinavie +45 74436332 Suisse +41 62 88979-32 Türkiye +90 216 5775552

Pour joindre notre hotline internationale, composez le : +49 711 3409-222 support@pilz.com

Pilz développe des produits qui protègent l'environnement grâce à l'utilisation de matériaux écologiques et de techniques à faible consommation d'énergie. Notre production est effectuée dans des bâtiments de conception écologique qui respectent l'environnement et avec une faible consommation d'énergie. Pilz favorise ainsi le développement durable en vous offrant des produits avec efficacité énergétique et des solutions écologiques.

Nous sommes représentés à l'échelle internationale. Pour plus de renseignements. consultez notre site Internet www.pilz.com ou prenez contact avec notre maison mère.